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Abstract

The objective of this work is to analyze the relation between the on-shell gravita-
tional action and the entropy for a class of AdS black holes, following the lines of a
recent work by Halmagyi and Lal, [1]. The relation states that the on-shell gravita-
tional action, when evaluated at its BPS limit, equals minus the black hole entropy,
calculated as the area of the event horizon.
The analysis is done for static, magnetically charged black holes in AdS4 arising
as solutions in N = 2 Fayet-Iliopoulos gauged supergravity coupled with running
scalars. In particular, we are investigating the validity of the above relation, as
stated in [1] for generic AdS4 black holes, for the solutions in another recent work,
by Gnecchi and Toldo, [2], which treats the particular class considered here. The
comparison exhibits an apparent contraddiction, as the results in [2] seem not to
satisfy the action-entropy relation.
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Introduction

Black holes are regions of spacetime where the gravitational force is so strong that
not even light can escape. The event horizon is the boundary to the region of no
return, shielding the singularity at the center of the black hole, where the curvature
becomes infinite. They arise as solution to the Einstein equation

Gµν =
8πG

c4 Tµν

where Gµν is the Einstein tensor and Tµν is the stress-energy tensor. Gµν contains
information about the metric and so the curvature of spacetime, whereas Tµν de-
scribes the matter distribution that causes the curvature.
Studying black holes in General Relativity reveals interesting results. First of all
they are macroscopic object, as to completely describe them three quantities are suf-
ficient. They are referred to as charges and are mass, angular momentum, magnetic
and electric charge. One can imagine that when a black hole forms from gravita-
tional collapse then the creation of an event horizon has the effect of smoothing out
all the particularities of the starting situation leaving us with the only three quanti-
ties above. This is referred to as no-hair theorem and the idea that all the information
about the internal structure has disappeared behind the horizon is commonly ex-
pressed with the phrase black holes have no hair.

On the other hand black holes are thermodynamic objects with all their thermo-
dynamic properties depending on the event horizon only and not on the interior.
In seminal works by Bekenstein ([3], [4], [5]) and Hawking ([6], [7], [8]), in fact, a
remarkable correspondence between the laws of black hole mechanics and the laws
of thermodynamics was established. Hawking showed that black holes are not so
black as they emit radiation and thus have a temperature. The radiation is thermal
meaning that it provides no information about the black hole interior leading to the
information loss paradox as it is in contrast with the unitary evolution of any quan-
tum system and still remains an open problem.

The major question that we address here is the fact that a black hole possesses
an entropy which is equal to one quarter of its event horizon area, a result known
as Bekenstein-Hawking area law. According to Boltzmann, thermodynamic entropy
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has a statistical interpretation in terms of microscopic configurations that give rise
to the same macroscopic properties. Identifying the black hole microstates is a dif-
ficult task, since, due to no-hair theorem we have no access to any information on
its internal configuration. A key issue in theoretical physics is to give a consistent
interpretation of the black hole microstates and reproduce the Bekenstein-Hawking
entropy by directly counting them.

Since regimes of very strong gravity are involved, a microscopic explanation of
the Bekenstein-Hawking entropy can only be found in a theory of quantum grav-
ity, a theory that unifies gravitation and quantum mechanics. String theory is the
most successful candidate. The basic assumption is that the most fundamental con-
stituents are not point-like, but are one-dimensional strings, that can be either open
or closed. String theory also predicts the existence of D-branes which are extended
objects open strings can end on. Stack of D-branes can reproduce the geometry of
a black hole and for this reason the first attempt to find a microscopic explanation
for black hole entropy, made by Strominger and Vafa in 1996, [9], related the black
hole microstates with the counting of configurations of D-branes. The analysis was
done for asymptotically flat balck holes in five dimensions.

Subsequent development of the AdS/CFT correspondence in 1997 by Maldacena,
[10], a duality relation between a gravitational theory in a d-dimensional AdS space-
time and a conformal field theory (CFT) in (d− 1)-dimensions, has brought interest
in asymptotically anti-de Sitter black holes, since the correspondence would allow
to perform calculations in the dual field theory. The correspondence is a realization
of the holographic principle, stating that the description of a volume of spacetime
is encoded on the boundary of that volume. Black hole entropy is indeed a holo-
graphic quantity since it depends on the area (and not the volume) of the black
hole horizon. AdS black hole microstates are realized as degrees of freedom of the
corresponding field theory, by means of the field theory partition function.

The black holes that are studied in this framework are supersymmetric black holes
(called BPS black holes) which arise as solutions to a supergravity theory (a low
energy effective theory for string theory) with a negative cosmological constant,
usually coupled to scalar fields. The analysis of more realistic black holes remains
an unsolved issue.

Objective and Main Results

The microscopic explanation of the entropy for AdS black holes employing the
correspondence, however, has not been developed until very recently, ([11]). The
microscopic counting is done on the field theory side, where a quantity known as
the supersymmetric index is computed, ([12]). The index represents the supersym-
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metric field theory partition function. In the large N limit, the entropy of AdS black
holes can be extracted from the index. Since the computation involves extremizing
the index with respect to a set of chemical potentials, this is known as the extrem-
ization principle (see [13]-[15]).
On the gravitational side, instead, we have that, thanks to holography, the loga-
rithm of the supersymmetric partition function of the CFT reproduces the on-shell
action. As a consistency check we should have that the on-shell action is related to
the entropy in the supersymmetric limit, (see [1], [16], [17]). In particular, the on-
shell action for BPS black holes in AdS should equal minus the black hole entropy,
calculated as the area of the event horizon.

Son−shell

∣∣∣∣
BPS

= −S (1)

For the case in exam, the duality is between a four-dimensional supergravity theory,
which admits asymptotically AdS4 black hole solutions, and a three-dimensional
supersymmetric CFT living on the conformal boundary, which is the ABJM the-
ory. In this work we are considering the gravitational side only to explore the
relation between the on-shell gravitational action and the black hole entropy, in the
BPS limit. In particular we are comparing two recent works, one by Halmagyi and
Lal, [1], and the other by Gnecchi and Toldo, [2], which exhibit an apparent con-
tradiction when it comes to check the consistency between gravitational action and
entropy.

The computation of the gravitational action is highly non trivial and necessitates
to be done in the non-extremal case (i.e. for black holes with non-zero temperature
and thus non supersymmetric). At the end of calculations the limit to supersym-
metric solution should be performed. Along these lines, an explicit example of the
validity of (1) can be found for the so-called universal black hole1 in [16]. Here the
calculations were done for a non-extremal deformation of the solution and then the
limit to BPS configuration was performed. The matching between the on-shell grav-
itational action and the entropy has also been recently discussed in [1], to which we
refer in this work, and in [17].

In the following work we address the issue (1) for static, magnetically charged
black holes with spherical horizon in AdS4, resulting from N = 2 four-dimensional
FI (Fayet-Iliopoulos) gauged supergravity (a supergravity theory is a low energy
effective theory for string theory), coupled to one running scalar field. We are con-
sidering 1/4 BPS black holes, preserving two out of 8 supercharges. The first 1/4
BPS black hole solution in AdS4 with radially dependent scalar profiles were found
by Cacciatori and Klemm ([20]) and are the starting point for the magnetic solution

1This the supersymmetric magnetically charged AdS4 black hole ([18], [19]) with constant scalar
profiles
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proposed in [2], which we will follow closely.

• In Gnecchi and Toldo, [2] the class of static, magnetically charged AdS4 black
holes, objective of this work, is analyzed and it results that magnetic black
holes are a state in a canonical thermodynamic ensemble, characterized by
Helmholtz free energy, Ω = M− TS. Holography relates the on-shell gravi-
tational action to the free energy,

Son−shell = βΩ = β(M− TS)

with β = 1/T. However, the BPS limit of the on-shell action does not repro-
duce the black hole entropy as the black hole mass, computed by means of
holographic renormalization techniques, would not vanish when taking the
limit. We are expecting the black hole mass to be zero in the BPS limit, since,
it is the only way to get rid of the divergence as T → 0 in β(M − TS) and
satisfy (1).
This also happens to be the condition to saturate the BPS bound for magnetic
black holes, as established in [21] and [22]

M ≥ 0

• The work by Halmagyi and Lal, [1], instead, states that (1) holds for generic
dyonic black holes in AdS4, by directly computing the on-shell gravitational
action.

The discrepancy is due to presence of finite terms coming from the delicate choice
of boundary conditions for the scalar fields, ([23], [24]), as well as of the countert-
erms used to regularize the divergencies. We obtain that the choice of Neumann
boundary conditions and counterterms, as is done in [1], leads to the right mass
for (1) to hold. The mass calculated via holographic renormalization and using
Neumann boundary conditions, as well, saturates the BPS limit for magnetic black
holes.
The choice in [2] (mixed boundary conditions), instead, would lead to a non-
vanishing mass in the extremal limit which is the reason why the relation in (1)
fails in this case.

The subtle choice between Neumann and mixed boundary conditions reflects when
checking the first law of thermodynamics. It seems that the mass which satisfy the
first law is not the one saturating the BPS bound.

Thesis Outline

In the following we outline the content of single chapters
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• In chapter 1 we introduce the laws of black hole mechanics and show their
correspondence with the laws of thermodynamics. In particular we recover
some useful formulas, such as the relation between temperature and the warp
factors appearing in the metric, which will be useful later. We do not provide
a rigorous proof of the laws, but in some cases, sketch their derivation.

• In chapter 2 the N = 2 supergravity theory in 4 dimensions is introduced. It
is the framework for the black hole solutions that will be considered in the
rest of the work. In particular, we describe the setup for the abelian gauging
procedure which guarantees an AdS vacuum (Fayet-Iliopoulos gauging). We
set the fermionic part of the lagrangian to zero and analyze the bosonic part
only. The extremal black hole configuration and its non-extremal deformation
are considered for a static, spherically symmetric and with magnetic charges
only ansatz. At last we analyze the asymptotic behavior of the scalar field,
which accounts for the right sign of the cosmological constant. In particular
we relate the scalar field mass to possible boundary conditions that can be
imposed on the field on the asymptotic boundary.

• In chapter 3 we analyze the holographic renormalization technique to compute
mass in AdS spacetime. This is a divergent quantity that exhibit linear and cu-
bic divergences coming from the Gibbons-Hawking boundary term and they
have to be removed in order to recover a finite value. Holographic renormal-
ization evaluates mass from the tt component of the boundary stress-energy
tensor, which is quantity depending on the variation of the boundary terms
in the action. The variation is explicitly performed. We separately analyze the
regular, finite and divergent terms, along the work in [2].

• In chapter 4 we analyze the validity of the relation (1) for the entropy of mag-
netic black holes. We explore the holographic relation between the free energy
of the system and its on-shell action. We directly compute the on-shell action
along the lines of [1] and analyze the contradiction with the results in [2].
Then we tackle the issue of boundary conditions for the scalar field in rela-
tion to both the extremization principle and the validity of the first law of
thermodynamics.

• In chapter 5 we draw the conclusions of our work trying to resolve the appar-
ent inconsistency between [2] and [1]. An open question remains on the mass
satisfying the first thermodynamic law and the one satisfying the BPS bound.
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1 Black Hole Thermodynamics

There is a remarkable correspondence between the laws of black hole mechanics
and the laws of thermodynamics, [8]. As long as our treatment remains classical
the resemblance is just an analogy. If we allow for a quantum mechanical analysis,
then it turns out that black holes can radiate, [6], possess a temperature and an
entropy. As a consequence, they can really be thought of as true thermodynamic
systems. In particular, we will see that both temperature and entropy depend only
on the event horizon. Temperature is related to the surface gravity on the horizon
and the entropy is equal to the horizon area.
Here we give a brief review of the laws. Some original works were referred to in
the Introduction and one can also see the dedicated chapters in [25] and [26], the
review given in [27] or the lectures notes given in [28] and [29].

1.1 The Zeroth Law

The zeroth law of black hole mechanics states that a quantity called surface gravity,
usually indicated with κ, is constant on the event horizon. This is analogue to the
first law of thermodynamics which states that temperature is constant at thermal
equilibrium.
Here we only state the zeroth law of black hole mechanics, without proving it. For
a rigorous proof, one can refer, for example, to [30].

In what follows we are going to analyze what is κ and how it is defined. The
surface gravity is so called from the fact that for a non rotating black hole, it is
related to the acceleration a static observer near the horizon needs to have, as seen
by a static observer at infinity, in order not to fall inside the black hole.

To define surface gravity we need the concepts of null hypersurface and Killing
horizon. A hypersurface can be defined as a level set of a function. Since we are
working in a 4-dimensional spacetime, it is a 3-dimensional submanifold. We call
it Σ.

Σ : f (xµ) = const (1.1)
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Then we can define its normal vector as

d f = ∂µ f dxµ (1.2)

and its corresponding dual
lµ = gµν∂ν f (1.3)

The hypersurface Σ is said to be null when lµ is a null vector, i.e.

l2
∣∣∣∣
Σ
= l · l

∣∣∣∣
Σ
= lµgµνlν

∣∣∣∣
Σ
= 0 (1.4)

Then lµ is both orthogonal and tangent. In fact, a null vector is normal to itself.

Using the torsion-free property of the Levi-Civita connection (Γλ
µν = Γλ

νµ) it is easy
to get to the following property

lµ∇µlν = lµgνρ∇µ∂ρ f =

= lµgνρ∇ρ∂µ f =

=
1
2

gνρ∇ρ(l2)

(1.5)

Since l2 is null on Σ, its gradient is normal and therefore proportional to lµ

∇l lµ ≡ lµ∇µlν ∝ lν (1.6)

This is the defining equation for surface gravity when Σ is a Killing horizon, i.e. a
hypersurface that has a null Killing vector field ξµ. Since we cannot have two null
vectors orthogonal to each other as the metric would be degenerate, we have that
ξµ has to be proportional to lµ and we can write

ξµ∇µξν = κξν (1.7)

Surface gravity arises as the proportionality constant, κ.

For a black hole with spherical (like Schwartzschild) or axisymmetric (like Kerr)
the event horizon is always a Killing horizon, as long as it is a null hypersurface.
Since the event horizon is a surface of constant r, then ∂r is normal to it. Imposing
that it is a null vector results in

∂µr∂νrgµν

∣∣∣∣
hor

= grr
∣∣∣∣
hor

= 0 (1.8)

But this is nothing else but the condition to find the event horizon given a metric.
We can therefore conclude that event horizons are Killing horizons, but the converse
is not true.
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1.1.1 Relation between temperature and euclidean time

As mentioned above the surface gravity κ is related to the black hole temperature
thus accounting for the equivalence between the zeroth law of black hole mechanics
and the corresponding one in thermodynamics.

There is a standard procedure to calculate the black hole temperature by means
of Euclidean gravity. One has to perform Euclidean continuation of the near hori-
zon geometry and then impose that the metric has the right periodicity, free of
conical singularities.
A key point is that a thermal system with temperature T = 1/β is periodic in eu-
clidean time with period β. This can be understood when taking into consideration
that the thermodynamic partition function is given by

Z = Tre−βH (1.9)

with H the Hamiltonian of the system. In quantum mechanics the evolution oper-
ator is given by e−iHt. The trace imposes periodicity with period β in the Euclidean
time.

We now show the relation between T and the metric warp factors. Given a metric
of general form

ds2 = − f (r)dt2 +
dr2

f (r)
+ g(r)dΩ2

2 (1.10)

Near the horizon rh we can do the following expansion

f (r) = f (rh) + f ′(rh)(r− rh) + ...

∼ f ′(rh)(r− rh)
(1.11)

since f (r) is zero when evaluated on the horizon by definition.

Concentrating on the t− r coordinates and changing the radial coordinate as

r = rh

(
1 +
| f ′(rh)|

4rh
ρ2
)

=⇒ dr =
1
2
| f ′(rh)|ρdρ (1.12)

we get

ds2 =
( f ′(rh))

2

4
ρ2dt2 + dρ2 + ...

= −ρ2
(
| f ′(rh)|

2
dt
)2

+ dρ2 + ...

= ρ2
(
| f ′(rh)|

2
dτ

)2

+ dρ2 + ...

(1.13)

where in the last equality we have passed to the Euclidean time t→ −iτ. Near the
horizon the metric resembles just the flat metric in polar coordinates. We should
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stress the fact that the similarity holds only in the vicinity of the horizon.
Imposing the periodicity of imaginary time to be β leads to

β =
4π

| f ′(rh)|
(1.14)

Then we can conclude that black hole temperature can be calculated directly from
the metric warp functions as follows

T =
1

4π
| f (r)|′

∣∣∣∣
rh

(1.15)

Relation between temperature and surface gravity

On the other hand there is a relation between the surface gravity and temperature
which states that

T =
κ

2π
(1.16)

The above relation has been explained by Hawking in [6], where he showed that
considering quantum effects near the black hole horizon causes emission and pro-
duction of particles by the black hole as if it were a thermal body with a temperature
given by

T =
h̄κ

2πkB
(1.17)

where h̄ is the reduced Planck constant, κ is the surface gravity and kB is the Boltz-
mann constant. Setting h̄ = kB = 1 we retrieve what stated in (1.16).
Form (1.15) and (1.16), it is straightforward to conclude that also the following
relation holds

κ =
1
2
| f (r)|′

∣∣∣∣
rh

(1.18)

An example: temperature of the Reissner-Nördstrom black hole

We sketch the derivation of the temperature for a charged black hole, known as the
Reissner-Nördstrom black hole in asymptotically flat spacetime. Its line element
can be written as

ds2
RN = −

(
1− 2GM

r
+

Q2

r2

)
dt2 +

1(
1− 2GM

r + Q2

r2

)dr2 + r2dΩ2
2 (1.19)
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where M is the mass, Q is the generic charge and dΩ2
2 the infinitesimal volume

element of a 2-sphere. The horizon is defined by

1− 2GM
r

+
Q2

r2 = 0 (1.20)

which leads to two solutions, the outer, r+, and the inner, r−, horizons

r± = GM±
√

G2M2 −Q2G (1.21)

r+ is usually referred to as the horizon.

Following the procedure outlined in the previous paragraph we pass to the Eu-
clidean time, define the new variable

r = r+
(
1 + ρ2) (1.22)

and expand about ρ = 0.
We get

ds2 =
4r3

+

r+ − r−

[
dρ2 + ρ2

(
r+ − r−

2r2
+

)2

dτ2 +
r+ − r−

4r+
dΩ2

2

]
(1.23)

It is immediate to read the value for β

β =
4πr2

+

r+ − r−
=⇒ T =

r+ − r−
4πr2

+

(1.24)

A few comments are in order. First we observe that T is always positive as r+ > r−
and it vanishes when the two horizons coincide. Although the calculation is given
for the Reissner-Nördstrom black the dipendence of temperature on the differene
between the outer and the inner horizons is a general feature.
This is the extremality condition which will be addressed in chapter 2. Extremal
black holes are, in fact, defined by their zero temperature, which is equivalent to
requiring that r+ = r−. The tt component in metric, therefore, has to be a perfect
square thus to have two coincident solutions in equation (1.20). This condition
is analogue to the saturation of the bound to have real solutions (imposing the
existence of the square root)

M ≥ |Q|√
G

(1.25)

We will come back to the issue of a bound for black hole mass in chapter 4 as it will
play a fundamental role for black hole in AdS spacetime analized in this project.

1.2 The First Law

The first law is concerned with mass, angular momentum and charge variation for
a black hole after we throw in it a particle characterized by its particular mass,
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angular momentum and charge. Quantities such as mass and angular momentum
are not straightforwardly defined in General Relativity. We address the mass issue
in chapter 3. The first law then is expressed, in the most general case (including
rotation and presence of charge), as

dM =
κ

8π
dA + ΩdJ + ΦdQ + χdP (1.26)

where M is the black hole mass, κ is the surface gravity as defined in (1.7), A is
the area of the event horizon, Ω is the black hole angular velocity, J its angular
momentum, Φ and χ are respectively the electrostatic and magnetostatic potentials
evaluated between the horizon and infinity, and Q and P are respectively the elec-
tric and magnetic charges.

To give a more consistent interpretation of the quantities above and relate (1.26)
to first law of thermodinamics which states

dE = TdS− pdV (1.27)

we will follow closely [3] and consider a generic black hole solution characterized
by mass M, charge Q and angular momentum per unit mass a, known as Kerr-
Newman solution.

ds2
KN = −∆

Σ
(
dt− a sin2 θdφ

)2
+

Σ
∆

dr2 + Σdθ2 +
sin2 θ

Σ
((

r2 + a2) dφ− adt
)2

(1.28)

where
∆ = r2 − 2GMr + a2 + Q2, Σ = r2 + a2 cos2 θ, a =

J
M

(1.29)

Using the previously cited result that entropy equals the area of the event horizon,
a question that will be analyzed in the subsequent paragraph, we are going to
differentiate the area.
First we remember that the area of the horizon is given by

A =
∫

r=r+

√
gθθ gφφdθdφ (1.30)

For the Kerr-Newman black hole we get

A =
∫ 2π

0
dφ
∫ π

0
dθ

√
Σ
(

∆
Σ

a2 sin2 θ +
sin2 θ

Σ
(r2 + a2)2

)∣∣∣∣∣
r+

=

= 2π
∫ π

0
sin θ

(
r2
+ + a2) =

= 4π
(
r2
+ + a2)

(1.31)
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where we have used that ∆ = 0 is the horizon equation and r+ is the outer horizon.
The two horizons are given by

r± = GM±
√

G2M2 − a2 −Q2 (1.32)

Considering the rationalized area α = A/4π in order not to have π factors, we can
write

α = r2
+ + a2 = 2GMr+ −Q2 (1.33)

where we have used that

∆|r+ = 0

r2
+ − 2GMr+ + a2 + Q2 = 0

r2
+ + a2 = 2GMr+ −Q2

(1.34)

Differentiating (1.33) we obtain

dα = 2r+dM + 2Mdr+ − 2QdQ (1.35)

From (1.32) we have

dr+ = dM +
MdM− ada−QdQ√

M2 − a2 −Q2
(1.36)

If we solve for dM we get

dM = Θdα + ~Ωd~J + ΦdQ (1.37)

with

Θ =
1
4 (r+ − r−)

α
, ~Ω ≡ ~a

α
, Φ ≡ Qr+

α
(1.38)

We observe that Θ can be interpreted as the black hole temperature, ~Ω can be
identified with its angular velocity and Φ with its electric potential. In (1.37) the
correspondence with (1.27) is manifest. For more details see [27] or [29]. The ~Ωd~J
and ΦdQ terms are the analog of the work term −pdV done on a thermodynamic
system. dα resembles the entropy and dM is the relativistic analogue of energy
variation dE appearing in (1.27).
Therefore, from (1.27), we can write

S =
Ac3

4h̄G
=

A
4

(1.39)

where in the last expressions we have set all the fundamental constants to 1.
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1.3 The Second Law: Bekenstein-Hawking area theorem

The first law (1.26) relates the changes in mass, charge and angular momentum that
a black hole can undergo. These quantities, however, cannot be modified arbitrarily.
There is a restriction and this restriction states that the area A of a black hole
cannot decrease. It remains the same when the transformation is reversible or
increases when it is irreversible. This is in striking analogy with the second law of
thermodynamics and it constitutes the second law of black hole mechanics.

δA ≥ 0 (1.40)

The proof of the area theorem is due to Hawking, [7]. In the following we show
that it holds for the Penrose process.

We have already stressed that the event horizon of a black hole is region of no
return, nothing can escape. It came out, however, thanks to the works by Penrose
(see, for example [31]), that energy can be extracted from a black hole that has
an ergosphere. Therefore we are referring to the Kerr black hole in the following
discussion. Here we report the metric

ds2
K = −dt2 +

2GMr
ρ2

(
dt− a sin2 dφ

)2
+
(
r2 + a2) sin2 θdφ2 + ρ2

(
dr2

∆
+ dθ2

)
(1.41)

where
ρ2 = r2 + a2 cos2 θ, ∆ = r2 − 2GMr + a2 (1.42)

A Kerr black holes has two Killing vectors, ∂t and ∂φ. The ergosphere is the region
where the time translation Killing vector field, ξµ∂µ = ∂t, becomes spacelike and it
is a combination of ∂t and ∂φ that is timelike. This means that inside the ergosphere
we are forced to follow a mix of time and φ directions, we are forced to rotate.

We can consider a test particle of momentum pµ. Its energy 1 is given by

E = −pµξµ (1.43)

Note that in the ergosphere we have no control on the sign and this the reason why
the Penrose process works. One can, in fact, arrange a situation in which a particle
with total energy E0

E0 = −pµ
0 ξµ (1.44)

falls freely towards a black hole. Since it is a free fall E0 remains constant. Then
it breaks in two pieces, with momenta pµ

1 and pµ
2 , when entering the ergosphere,

1Note that in this chapter we are using the mostly plus signature, then the minus sign in defining
the energy assures that it is a positive quantity
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in such a way that one enters the black hole and the other escapes. Furthermore
suppose taht the one falling inside the black hole has negative energy, be it E1 < 0.
Conservation of momentum requires

pµ
0 = pµ

1 + pµ
2 (1.45)

Contraction with ξµ gives the equation for the conservation of total energy

E0 = E1 + E2 (1.46)

As we have arranged for E1 to be negative, it means that E2 is positive and, given
the conservation of energy

E2 = E0 + |E1| (1.47)

The increase in energy by |E1| comes from the reduction of the black hole mass by
the same amount. The energy |E1| has been extracted from the black hole.

To see the relation to the second law we should consider that energy extraction
has a limit, imposed by the fact that the particle entering the black hole possesses
negative angular momentum, which means that it rotates in the opposite direction
with respect to that of the black hole. The consequence is that the black hole angular
momentum can be reduced to zero, while maintaining its mass M finite. When the
angular momentum vanishes there is no ergosphere and no further energy could
be extracted.
The linear combination given by

χµ = ∂t +
a

r2
+ + a2

∂φ = ∂t + Ω∂φ (1.48)

is null on the horizon r+, so we have that for the particle entering the back hole that

pµ
1 χµ ≤ 0

pµ
1

(
∂t + Ω∂φ

)
≤ 0

−E1 + ΩJ1 ≤ 0

J1 ≤
E1

Ω

(1.49)

This justifies the statement that the angular momentum of the entering particle
should be negative.

After the particle is absorbed by the black hole, its mass and angular momentum
change by exactly the mass and angular momentum of the swallowed particle. So
we can write

δJ ≤ δM
Ω

(1.50)

and in turn it can be rewritten as

δMirr ≥ 0 (1.51)
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where Mirr is the irreducible mass introduced by Christodoulou in [32]. It is defined
as

Mirr =
1
2

(
M2 +

√
M4 − J2

G2

)
(1.52)

Varying (1.52) we indeed obtain

δMirr =
1

2κG
(δM−ΩδJ) (1.53)

where κ is the surface gravity for (1.41).

κ =
r+ − GM
2GMr+

(1.54)

We see that (1.50) implies (1.51). This intuitively shows that according to the second
law of black hole mechanics the area of the event horizon cannot decrease as it is
straightforward to show that the irreducible mass is related to the area A of the
black hole event horizon computed using (1.30).

Mirr =
A

16π
(1.55)

Then we can conclude that the area can never decrease in this process.

δA ≥ 0 (1.56)

Moreover, as argued in [3], the irreducible mass can be interpreted as a sort of
energy that cannot be converted into work. This just resembles the second law of
thermodynamics, where increasing of entropy implies degradation of energy. The
irreducible mass so represents a sort of degraded energy that cannot be extracted
from the black hole by means of Penrose process.

1.3.1 The generalized second law

If we consider a situation in which an object with some common entropy enters
a black hole, then it seems that the entropy of the universe has decreased, as an
external observer cannot directly verify that it has not decreased. But we have seen
that the area theorem states the area of the event horizon, which we identified with
the black hole entropy, cannot decrease in any process. Therefore, Bekenstein [3]
proposed a generalized version of the second law

The common entropy in the black hole exterior plus the black hole entropy never decreases

So black holes do contribute to the total amount of entropy in the universe.
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1.4 The Third Law

The third law of black hole mechanics as stated in [8] says that we cannot reduce
the surface gravity κ to zero in a finite amount of operations. This is equivalent to
the third law of thermodynamics which states that we cannot reach zero tempera-
ture in a finite sequence of operations. We do not discuss it here, but details can be
found in the references given above.

We conclude by summarizing the analogy between the four laws of black hole
mechanics and those of thermodynamics.

Law Thermodynamics Black Holes

zeroth T is constant at equilibrium κ is constant at event horizon
first dE = TdS + work terms dM = κ

8π dA + work terms
second δS ≥ 0 δA ≥ 0
third T = 0 cannot be reached in κ = 0 cannot be reached in

a finite number of operations a finite number of operations

We shall stress again that at a classical level this just an analogy, the identification

S↔ A, T ↔ κ

becomes exact when quantum effects are taken into consideration. It is the existence
of Hawking radiation that turns a black hole into a real thermodynamic object.
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2 Extremal Black Holes inN = 2
Supergravity

2.1 d = 4, N = 2 Gauged Supergravity

We are working in the framework of d = 4, N = 2 supergravity, ([20], [34], [35]). At
its classical level it represent a relativistic theory coupled with matter. N = 2 refers
to the number of supersymmetry generators and corresponds to 8 supercharges.
The field content is organized in multiplets containing the same number of bosonic
and fermionic degrees of freedom, as is required in any supersymmetric theory.

The multiplet content is given by

• The supergravity multiplet containing the graviton gµν (2 dofs on-shell), two
gravitini Ψi

µ (two dofs on-shell each) and a massless vector, the graviphoton
A0

µ (2 dofs on-shell).

• One vector multiplet containing a massless vector Ai
µ (2 dofs on-shell), a pair

of gauginos λi
µ (2 dofs on-shell each) and a complex scalar z (2 dofs on-shell).

The scalar field parametrizes a special Kähler manifold. Details about quan-
tities in special Kähler geometry are provided in appendix A. As a reference
one can see [36].

The presence of the vector field allows for the possibility to gauge the theory.
For the case at hand we are considering gauged supergravity with abelian Fayet-
Ilioupoulos gauging.
The symmetry that is being gauged is a subgroup of the R-symmetry of the theory.
An R-symmetry is a symmetry that commutes with Poincarè generators, but not
with the supersymmetry charges. In N = 2 the R-symmetry group is given by
SU(2)×U(1). Fayet-Iliioupulos gauging involves gauging the U(1) subgroup.

After the gauging procedure a scalar potential appears which accounts for AdS
vacua solutions. The special Kähler geometry provides the coupling between the
fields in the supergravity multiplet and in the vector multiplet. Since the gauge
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group is abelian, the scalar field is not charged, while only the two gravitinos ac-
quire charge given by

eΛ ≡ gξΛ (2.1)

where the ξΛ are constants called Fayet-Iliopoulos parameters.

We set the fermionic part of the lagrangian to zero, since we are interested in the
bosonic part only.
Throughout the work we are going to set h̄ = c = 8πG = 1 and use the mostly
minus signature convention, as in [2], which we follow closely in this chapter.

2.1.1 The Bosonic Lagrangian

The bosonic part of the supergravity lagrangian in 4 dimensions and N = 2 with
nV vector multiplet and no hypermultiplets, is given by

L =
R
2
+ gij∂µzi∂µzj + IΛΣFΛ

µνFΣµν +
1
2
RΛΣεµνρσFΛ

µνFΣ
ρσ −Vg (2.2)

with Λ, Σ = 0, 1, ..., nV and i, j = 1, ..., nV . IΛΣ and RΛΣ are, respectively, the
real and the imaginary part of the period matrix N , defined in (A.7) in terms
of symplectic sections, XΛ and FΛ, describing the Kähler manifold (as mentioned
earlier, details are provided in A).
The fundamental bosonic fields are the metric gµν, the nV + 1 vector fields AΛ

µ ,
where A0

µ is called the graviphoton and nV scalar fields. Here we are considering
one vector multiplet,

nV = 1 (2.3)

Furthermore we set the electric charges to zero, allow only for magnetic charges and
a radially varying scalar field, which is taken to be real. The symplectic sections are
expressed in terms of a holomorphic function called the prepotential

F = −2i
√

X0(X1)3 (2.4)

The lagrangian can then be written as

L =
R
2
+ gij∂µzi∂µzj + IΛΣFΛ

µνFΣµν −Vg (2.5)

Since the gauge group is abelian, the vector multiplet scalar field is neutral, and the
only charged fields are the two gravitini.
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The quantities gi j̄, z, IΛΣ,RΛΣ, Vg are related with special geometry and can be writ-
ten in terms of holomorphic symplectic sections (XΛ, FΛ). In fact the scalar fields
parametrize a special Kähler manifold, which is described by holomorphic sections
(see Appendix A).
We work in a static and spherically symmetric ansatz, [2]

ds2 = U2(r)dt2 − 1
U2(r)

dr2 − h2(r)
(
dθ2 + sin2 θdφ2) (2.6)

with
U2(r) = eK(r) f (r) (2.7)

and
h2(r) = e−K(r)r2 (2.8)

The spherical symmetry, Bianchi identity and Maxwell equation, constrain the form
of the field strength to be

FΛ
tr = − 1

2h2(r)
IΛΣ

(
RΣΓ pΓ − qΣ

)
(2.9)

FΛ
θφ =

1
2

pΛ sin θ (2.10)

The electric qΛ and magnetic pΛ charges are given by

pΛ = −1
4

∫
S2

FΛ (2.11)

qΛ = −1
4

∫
S2

GΛ (2.12)

where GΛ is the dual field strength defined as

GΛµν =
1
2

εµνρσ
∂L

∂FΛ
ρσ

= RΛΣFΣ
µν −

1
2
IΛΣεµνρσFΣρσ (2.13)

2.2 Magnetic Configuration

The first example of BPS black holes with spherical horizon in the context of gauged
supergravity was treated by Cacciatori and Klemm, [20], finding solutions to the set
of equation in [37], and then analyzed in [34] and [35]. In [2], the supersymmetric
solutions of [20] are deformed to non-extremal configurations, setting the warp
factor f (r) to be
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f (r) = κ +
c1

r
+

c2

r2 + g̃2r2e−2K(r) (2.14)

where κ = 1 for spherical configurations and g̃ = gξ̃.

ξ̃ =
ξ̂

β
, ξ̂ =

√
2ξ1/4

0 ξ3/4
1

33/4 (2.15)

where β is a non physical parameter explicitly expressed here to make it easier to
compare different results in literature. Later on it will be set to one.
The field strength is only magnetic

FΛ
tr = 0, FΛ

θφ =
pΛ

2
sin θ (2.16)

The scalar field is expressed as

z =
X1

X0 =
H1

H0 (2.17)

with 1

HΛ =
XΛ + X̄Λ

2
(2.18)

and the sections HΛ are expressed in terms of harmonic functions

HΛ = aΛ +
bΛ

r
(2.19)

The Kähler potential is

e−K(r) = β2
√

H0(H1)3

= β2

√(
a0 +

b0

r

)(
a1 +

b1

r

)3

= β2

√
(r + Q0) (r + Q1)

3

r2

(2.20)

where we have defined
Q0 =

a0

b0
, Q1 =

a1

b1
(2.21)

and used the property2 a0a3
1 = 1 and set β to one, since it is not a physical parame-

1The XΛ sections are real, therefore XΛ = X̄Λ

2Einstein’s equations put constraints on the aΛ parameters imposing that

a0 =

√
2gξ3/2

1 lAdS

3
√

3
√

ξ0
=

(
ξ3

1
27ξ3

0

)1/4

(2.22)

a1 =

√
2g
√

ξ0ξ1lAdS√
3

=

(
3ξ0
ξ1

)1/4
(2.23)

We observe that
a0a3

1 = 1 (2.24)
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ter. Thanks to the scaling symmetry

r → λr, c1 → λc1, c2 → λ2c2, bΛ → λbΛ, β→ β

λ
(2.25)

we can safely set β = 1.

2.2.1 AdS asymptotics

We are looking for solution that are asymptotically AdS, so that the scalar potential
has to reproduce a negative cosmological constant Λ at infinity. The scalar potential
is given by

Vg = −g2
(

ξ0ξ1√
z
+

ξ2
1

3
√

z
)

(2.26)

∂

∂z

[
−g2

(
ξ0ξ1√

z
+

ξ2
1

3
√

z
)]

= −g2
(
− ξ0ξ1

2
√

z3
+

ξ2
1

6
√

z

)
(2.27)

∂zVg|∞ = 0 =⇒ z∞ =
3ξ0

ξ1
(2.28)

Since in an AdSd+1 spacetime the cosmological constant is related to the dimension
of the spacetime via

Λ = −d(d− 1)
2l2

AdS
(2.29)

we have that
Vg(z∞) = −

3
l2
AdS

= Λ (2.30)

with
l2
Ads =

1

g2
√

4
27 ξ0ξ3

1

(2.31)

Superpotential

Whenever the gauging potential can be written as (for our real scalar field this is
the case)

Vg = g2
(
−3W2 + gij∂iW∂jW

)
(2.32)

where W is called the superpotential function, the radial evolution of the scalar
field can be written in terms ofW , ([2], [35]), as

zi′ = − eK/2

ξ̃r
gij∂jW ,

(
re−K/2

)′
=
W
ξ̃

(2.33)

where ξ̃ is as defined before.
The superpotential will play an important role in the counterterm analysis for the
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holographic renormalization procedure of the subsequent chapters. We do not
discuss here the details about the introduction and the origin of the superpotential,
that can be found in both [2] and [35].

2.2.2 Magnetic charges

The magnetic charges pΛ are derived from the Hamiltonian constraint, which has
to be imposed when rewriting the action as a sum of squares, as explained in [2]

VBH = −1
2

pΛIΛΣ pΣ = −2
(

b̃ΛIΛΣb̃Σ + c2 ãΛIΛΣ ãΣ − c1b̃ΛIΛΣ ãΣ
)

(2.34)

where IΛΣ is as defined in A.2 and the tilded parameters are related to the untilded
ones by

ãΛ =
aΛ

2
√

2
, b̃Λ =

bΛ

2
√

2
(2.35)

Solving (2.34) leads us to the following values for the magnetic charges

p0 = ±

√
b0(b0 − c1a0) + c2a2

0√
2

(2.36)

p1 = ±

√
b1(b1 − c1a1) + c2a2

1√
2

(2.37)

where c1 and c2 are real parameters comparing in the warp factor f (r).
These are the magnetic charges for the non extremal configuration set by (2.14).
In what follows we show how to obtain the extremal configuration which is also
supersymmetric.

2.2.3 Extremal BPS Solutions

In the case of magnetically charged black holes with running scalars we can have
extremal and supersymmetric black holes. The existence of a horizon shielding the
black hole singularity is related to non trivial scalar profiles. Constant scalars lead
to naked singularities, [38].
The extremality condition is verified when the warp factor f (r) presents a double
pole. In other words when f (r) can be written as

f (r) =
1

r2l2
AdS

(
r2 − a2)2

(2.38)

where a = rh is the horizon radius.
Supersymmetric solutions have also to satisfy a constraint on the charges, known
as the Dirac quantization condition

gΛ pΛ = ±1 (2.39)
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Imposing that the warp factor f (r) should be written as (2.38), puts a series of
conditions on the parameters c1 and c2, with which the warp factor has been de-
fined. We can write f (r) as a perfect square plus other terms as follows

f (r) =
1

r2l2
AdS

(
r2 −

(
3Q3

1 −
l2
AdS
2

))2

+

+
1
r

(
c1 −

8Q3
1

l2
AdS

+
1
r2

(
c2 −

12Q4
1

l2
AdS
−

l2
AdS
4

+ 3Q2
1

)) (2.40)

Imposing (2.38) produces the following BPS limits for c1 and c2, when the Dirac-like
quantization supersymmetric condition is chosen to be

gΛ pΛ = −1 (2.41)

c1 =
8

l2
AdS

Q3
1β2 (2.42)

c2 = −3Q2
1 +

l2
AdS
4β2 +

12
l2
AdS

β2Q4
1 (2.43)

The horizon is then given by

rh = a =

√
3Q2

1 −
l2
AdS
2

(2.44)

In the extremal limit the magnetic charges pΛ can be evaluated from (2.36) and
(2.37) using the extremal limits for the parameters c1 and c2, (2.42) and (2.43). We
obtain

p0 = ±
(

1
4gξ0

+
2
3

gb2
1

ξ2
1

ξ0
β

)
(2.45)

p1 = ±
(
−3

4
1

gξ1
+

2
3

gξ1b2
1β2
)

(2.46)

Upon imposing the Dirac quantization (2.41), we have to choose the minus sign for
p0 and the plus sign for p1.
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p0
extr = −

1
4gξ0

− 2
3

gb2
1

ξ2
1

ξ0
; p1

extr = −
3
4

1
gξ1

+
2
3

gξ1b2
1 (2.47)

The other two solutions are extremal but not supersymmetric.
In an analogous way we can find the extremal limit for the magnetosatic potential,
defined as the value of the dual electric field at infinity upon the assumption that it
vanishes on the horizon r+

χΛ = −
∫ ∞

r+
GΛ,trdr (2.48)

where GΛ is defined as in (2.13), which in our case becomes

GΛ,tr =
eK

2r2IΛΣ pΣ (2.49)

We have that

G0,tr =
1√(

a0 +
b0
r

) (
a1 +

b1
r

)3

1
2r2

(
−z3/2

)
p0 = −1

2
p0

(a0r + b0)
2 (2.50)

and

G1,tr =
1√(

a0 +
b0
r

) (
a1 +

b1
r

)3

1
2r2

(
− 3√

z

)
p1 = −3

2
p1

(a1r + b1)
2 (2.51)

where we have used (2.17).
Integrating from r+ to infinity, we get

χ0 =
1
2

p0

a0 (a0r+ + b0)
, χ1 =

3
2

p1

a1 (a1r+ + b0)
(2.52)

Upon rewriting we end up with

χ0 =
p0

2a2
0

(
b0
a0
+ r+

) = g2
0l2

AdS
p0

r+ − 3Q1
(2.53)

χ1 =
3p1

2a2
1

(
b1
a1
+ r+

) = g2
1l2

AdS
p1

3(Q1 + r+)
(2.54)
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Taking the extremal limit of (2.53) and (2.54) means evaluating them at the extremal
values for the magnetic charges as found in (2.47).

We have re-derived here the BPS solution of [2], which will prove useful in the
following chapters when discussing the thermodynamic properties. At last, we
give the expressions for temperature and entropy.

Temperature and Entropy

We compute the temperature T and the entropy S as from equation derived, respec-
tively, in (1.15) and (1.39) for our magnetic black hole.
The temperature is then

T =
1

4π
eK(r) d f (r)

dr

∣∣∣∣
r=r+

(2.55)

Using the radial derivative of the f (r) warp function as in (B.21), evaluated at the
outer horizon r+

T =
1

4π
eK(r+) c1l2

AdS − 8Q3
1 + 2l2

AdSr+ − 12Q2
1r+ + 4r3

+

l2
AdSr2

+

(2.56)

where we have used the defining equation for r+ to explicit c2

c2 = −(c1 + r+)r+ −
1

l2
AdS

(r+ − 3Q1) (r+ + Q1)
3 (2.57)

On the other side the entropy is the area of the event horizon as defined in (1.30)

S =
A
4

=

=
1
4

(∫ π

0
dθ
∫ 2π

0
dφ
√

gθθ gφφ

) ∣∣∣∣
r+

=

=
1
4

(∫ π

0
dθ
∫ 2π

0
dφ

√
e−2K(r)r4 sin2(θ)

) ∣∣∣∣
r+

=

=
1
4

∫ π

0
dθ
∫ 2π

0
dφe−K(r+)r2

+ sin(θ) =

=
1
2

πr2
+e−K(r+) [− cos(θ)]π0 =

= πr2
+e−K(r+)

(2.58)

Therefore
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S = πr2
+e−K(r+) (2.59)

2.3 Scalar Field Analysis

Here we give a brief analysis of the scalar field. We describe the reparametrization
to rewrite it as a canonically renormalized field, study its expansion at the asymp-
totic infinity and discuss the allowed boundary conditions.
For details on scalar field expansion in AdS spacetime and boundary conditions
one can see [23], [24], [39].

2.3.1 Defining a canonical scalar field

For the calculations in the next section, it is useful to reparametrize the scalar field
z as follows.

z = exφ(r)+y (2.60)

where x and y are constants and φ is the canonically renormalized field. The con-
stant y allows to choose a reference value of the field, which is chosen to the asymp-
totic infinity (r → ∞)

ϕ(r) = φ(r)− φ(∞) (2.61)

If we want φ and thus ϕ be a canonical normalized field, then the kinetic term
should be of the form

gi j̄∂µzi∂µz j̄ → 1
2

∂µ ϕ∂µ ϕ (2.62)

Using (A.31) for the metric gi j̄

gi j̄∂µzi∂µz j̄ =
3

16z2 ∂µz∂µz (2.63)

and
z = ex(ϕ+φ(∞))+y (2.64)

and imposing (2.62)
3

16z2 x2∂µ ϕ∂µ ϕz2 =
1
2

∂µ ϕ∂µ ϕ (2.65)

we obtain
x2 =

8
3

(2.66)

Then

z(r) = z∞e
√

8/3ϕ(r) (2.67)
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With this ansatz for the scalar field the lagrangian (2.5) becomes

L =
R
2
+

1
2

∂µ ϕ(r)∂µ ϕ(r)−
(

3ξ0

ξ1

)3/2

e
√

6ϕF0
µνF0µν+

− 3
(

3ξ0

ξ1

)−1/2

e−
√

2/3ϕF1
µνF1µν −Vg(ϕ)

(2.68)

and the scalar potential (2.26) becomes

Vg = −g2
(

ξ0ξ1√
z
+

ξ2
1

3
√

z
)
=

= −g2

(
ξ0ξ1

(
ξ1

3ξ0

)1/2

e−
√

2/3ϕ +
ξ2

1
3

(
3ξ0

ξ1

)1/2

e
√

2/3ϕ

)
=

= −2g2
(

1
3

ξ0ξ3
1

)1/2
(

e−
√

2/3ϕ + e
√

2/3ϕ
)

2

(2.69)

which can be written as

Vg(ϕ) = − 3
l2
AdS

cosh

(√
2
3

ϕ

)
(2.70)

This is what has been obtained in [2]. The cosh potential was analyzed in detail in
[24].

Since we are working in an asymptotically AdS spacetime, for which

V
′
g(ϕ(∞)) = 0; Vg(ϕ(∞)) = −d(d− 1)

2l2
AdS

(2.71)

we can expand3 the scalar potential in the vicinity of the extremum as follows

Vg(ϕ) = −d(d− 1)
2l2

AdS
+

1
2

m2(ϕ− ϕ∞)
2 + o(ϕ− ϕ∞)

2 (2.72)

We can read the scalar field mass

Vg(ϕ) = − 3
l2
AdS

cosh

(√
2
3

ϕ

)
=

= − 3
l2
AdS

(
1 +

1
2

2
3

ϕ2
)
=

= − 3
l2
AdS

+
1
2

(
− 2

l2
AdS

)
ϕ2

(2.73)

3Reminder of the expansion

cosh(x) = 1 +
x2

2
+ ...
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Therefore

m2 = − 2
l2
AdS

(2.74)

The mass satisfies the Breitenlohner-Friedman bound (see [23], [24])

m2l2
AdS ≥ −

(
d
2

)2

(2.75)

where d = 3 in our analysis.
In particular it satisfies a more constraining condition, ([23])

−
(

d
2

)2

≤ m2l2
AdS ≤ −

(
d
2

)2

+ 1 (2.76)

which allows for Neumann and mixed boundary conditions at the asymptotic in-
finity.

2.3.2 Boundary Conditions on Scalar Field

In order to analyze the boundary conditions to be imposed on the canonically renor-
malized field ϕ, we should analyze its expansion at the conformal boundary.

Metric and field expansion on the boundary

Asymptotically the metric ansatz we are using can be written as

ds2
∞ = −

l2
AdS
r2 dr2 +

r2

l2
AdS

h0,ijdxidxj (2.77)

where h0 is the minkowski metric on the boundary. We indicate the anti-de Sitter
spacetime M and its conformal boundary by ∂M, which is located at r = ∞. We
are going to discuss this in the next chapter.

As in [2], the metric on the boundary h0 is given by1 0 0
0 −l2

AdS 0
0 0 −l2

AdS sin2 θ

 (2.78)
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After defining
r

lAdS
= e

r̃
lAdS =⇒ dr̃2 =

l2
AdS
r2 (2.79)

we can rewrite (2.77) to match the conventions in [2] and [24].

ds2
∞ = −dr̃2 + e−2r̃/lAdS h0,ijdxidxj (2.80)

We then rename r̃ = r.

On the other hand, having written the scalar filed z in terms of the canonically
normalized filed ϕ as in (A.51) and having imposed the vanishing at r → ∞ for the
ϕ field, we can expand this last as

ϕ(r) ∼ α1

r∆−
+

α2

r∆+
+ ... (2.81)

with 4

α1 =

√
6b1

a1
; α2 =

α2
1√
6

(2.82)

with ∆− and ∆+ the solutions of

m2l2
AdS = ∆(∆− d) (2.83)

We have
∆− = 1; ∆+ = 2 (2.84)

On the other hand,if we denote by ϕ− and ϕ+ the two modes, solutions of the
Klein-Gordon equation for the scalar field, then the scalar field can be expanded as

ϕ(r) ∼ e−∆−r/lAdS ϕ− + e−∆+r/lAdS ϕ+ (2.85)

4To find the coefficients of the expansion in (2.81), we proceed expanding the z field defined in
terms of symplectic sections

z(r) =
X1
X0

=
a1r + b1
a0r + b0

up to second order in 1/r as follows:

z(r) =
a1r + b1
a0r + b0

=
a0r
(

a1
a0
+ b1

a0r

)
a0r
(

1 + b0
a0r

) =

(
a1
a0

+
b1
a0r

)(
1− b0

a0r
+

b2
0

a2
0r2

)
=

=
a1
a0

(
1 +

4Q1
r

+
12Q2

1
r2 + O(r−3)

)
where we have used the definitions (A.47) and the relation Q0 = −3Q1. Using the definitions (2.22)
and (2.23) of a0 and a1, we find that a1/a0 = z∞.
On the other side, expanding up to the same order (A.51) using the ϕ expansion of (2.81)

z(r) = z∞

(
1 +

√
8
3

α1
r

+

(√
8
3

α2 +
4
3

α2
1

)
1
r2 + O(r−3)

)
and comparing the coefficients of the expansions, we get the relations (2.82).
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Comparing (2.81) and (2.85), we can explicitly write the two modes

ϕ− =

√
6Q1

lAdS
; ϕ+ =

√
6Q2

1

l2
AdS

(2.86)

In [24] the boundary terms required to impose different boundary conditions are
discussed throughout. We report here here the the boundary terms that should be
added to the lagrangian in order to satisfy Neumann and mixed boundary condi-
tions.
For Neumann boundary conditions we have

SNeumann = −
∫

∂M
d3x
√

h0ϕ−π̂(∆+) (2.87)

whereas for mixed boundary condition the additional term takes the form

Smixed = SNeumann +
∫

∂M
d3x
√

h0
(

f (ϕ−)− ϕ− f ′(ϕ−)
)

(2.88)

where h0 is as defined in (2.78) and π̂(∆+) is defined in [24] as

π̂∆+ = lim
r→∞

e
∆+

r lAdS π(∆+) (2.89)

with π(∆+) the momentum conjugated to ϕ−. In [24] it is argued why we have to
use the conjugate momentum and not ϕ− to impose boundary conditions. Briefly
the reason lies in the fact that π(∆+) behaves well under radial shifts. This is crucial
since we are going to work in a truncated spacetime at some r0 and then we are
going to push the boundary to r = ∞, ( see chapter 3).
For our solution (see [2])

π(∆+) =
2

lAdS
e−2r/lAdS ϕ+, f ′(ϕ−) = −π̂(∆+) (2.90)
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3 Mass in AdS and Holographic
Renormalization

Thanks to the AdS/CFT correspondence we can relate a string theory defined in
the bulk of AdS spacetime to a conformal quantum field theory which lives on
the conformal boundary of AdS spacetime. String theory can be approximated by
supergravity, a weakly coupled theory. Therefore the correspondence is between
weakly coupled gravitational theory and strongly coupled quantum field theory.
In particular the correspondence allows to identify the radial coordinate of the grav-
itational theory with the renormalization group scale of the boundary theory. This
is the idea at the basis of holographic renormalization. In fact, the UV divergen-
cies, which come up in filed theories, correspond to IR (large r) divergences of the
gravitational theory. Therefore, quantities in the filed theory are renormalized by
removing the large r divergencies.

In the holographic renormalizion procedure we consider a radial foliation of the
spacetime, in other words we divide it into hypersurfaces of constant r and take
them isomorphic to the boundary. In the subsequent computations, to manage the
infrared divergencies near the boundary, we will consider a truncated AdS space-
time by putting a cut-off at a finite radial coordinate r0 and then taking the limit
to r → ∞, as the setup in [2]. Therefore all the calculations will be performed in
the truncated spacetime. Since AdS spacetime possesses a boundary, which is a
3-dimensional hypersurface embedded in 4-dimensional spacetime, we will need
the following notions of induced metric and extrinsic curvature.

In the first part of this chapter we are going to define the concept of extrinsic
curvature and explicitly perform the variation of the gravitational action. In sec-
ond part, we compute the mass of the black hole from the tt component of the
stress-energy tensor and compare the different prescriptions for both finite terms
and counterterms, as given in the two works, [1] and [2], main object of our project.

37



3.1 Projection operator on a hypersurface

Considering the boundary as a hypersurface ∂M embedded in the spacetime man-
ifold which we denote with M, we take nµ to be the unit normal spacelike vector
to ∂M satisfying

nµnµ = −1 (3.1)

We can defined a projector operator to project quantities living in the ambient space
M onto the hypersurface ∂M

hµ
ν = δ

µ
ν + nµnν (3.2)

It can be straightforwardly checked that hµ
ν is a projector operator, since it satisfies

the following two properties

• It is orthogonal to the hypersurface normal nµ

nµhν
µ =

(
δν

µ + nνnν

)
nµ =

= δν
µnµ +

(
nµnµ

)︸ ︷︷ ︸
−1

nν =

= nν − nν =

= 0

(3.3)

• It is idempotent, i.e. it squares to the identity operator

hµ
λhλ

ν =
(
δ

µ
λ + nµnλ

) (
δλ

ν + nλnν

)
=

= δ
µ
ν + nµnν + nµnν + nµnλnλnν =

= δ
µ
ν + 2nµnν − nµnν =

= δ
µ
ν + nµnν =

= hµ
ν

(3.4)

3.1.1 Induced metric on the hypersurface

Starting with (3.2) we can use the metric tensor gµν to lower the upper index and
obtain

hµν = gµν + nµnν (3.5)
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Note that given two vectors vµ and uµ tangent the hypersurface ∂M, that is normal
to nµ, we get

gµνvµuν =
(
hµν − nµnν

)
vµuν =

= hµνvµuν + nµvµ︸︷︷︸
0

nνuν︸︷︷︸
0

=

= hµνvµuν

(3.6)

This justifies considering hµν as the induced metric on the hypersurface. It is also
known as the first fundamental form.
hµν has its components on the hypersurface and therefore projects any vector inM
into a vector tangent to the hypersurface. Given a vector vµ, the action of hµν on it
will be orthogonal to nµ.(

hµνvµ
)

nν = gµνvµnν + nµvµ nνnν︸︷︷︸
−1

=

= vµnµ − vµnµ =

= 0

(3.7)

The inverse of hµν is given by hµν

hµν = gµν + nµnν (3.8)

and using (3.4) it satisfies the following property

hαβhβγ = hβ
σgσαhρ

βgργ =

= hρ
σgσαgργ =

= hα
γ

(3.9)

3.2 Extrinsic curvature

For a hypersurface embedded in M it does make sense to talk about extrinsic
curvature which depends on how the hypersurface is embedded in the ambient
space. We remind that intrinsic curvature is the one measured by the Riemann
tensor. We are following the definition used in [2]

Θµν = −1
2
(
∇µnν +∇νnµ

)
(3.10)

which comes from the geometric interpretation as explained in the following para-
graph.

As shown, respectively in (D.10) and (D.11), Θµν is orthogonal to the normal vector
nµ and a symmetric rank 2 tensor.
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3.2.1 Geometric interpretation

The extrinsic curvature measure how the hypersurface is embedded in the ambient
space. For reference one can see [25], [26], [33]. Suppose we have a vector field vµ

inM which is parallely transported along another vector field uµ so that

∇vu = vµ∇µuν = 0 (3.11)

holds. This relation is, in general, not true when projected on the hypersurface ∂M
due to the embedding.

∂M

nµ

nµ

The extrinsic curvature is a (0, 2) tensor that measures how parallel transport fails
on the hypersurface because of its bending in M. We are using the definition of
[33]

Θ : Tp(M)× Tp(M)→ R

v, u→ nµ

(
hγ

βvβ∇γ

(
hµ

ρ uρ
)) (3.12)

where nµ is the unit normal vector to the hypersurface as before.
To find Θµν we should perform a little algebra on the above expression getting to

nµ

(
hγ

βvβ∇γ

(
hµ

ρ uρ
))

= −
(

hγ
βvβ
) (

hµ
ρ uρ
)
∇γnµ =

= −hγ
βhµ

ρ∇γnµ

(
vβuρ

) (3.13)

where we have used the fact that hµ
ρ uρ is tangent to the hypersurface so that

nµhµ
ρ uρ = 0 and therefore the first equality holds.

Then since

Θ(v, u) = Θµνvµuν (3.14)

we have that

Θµν = −hα
µhβ

ν∇αnβ (3.15)

In appendix D we show that there are different equivalent definitions of the extrin-
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sic curvature tensor. Here we list them all:

Θµν = −hα
µhβ

ν∇αnβ =

= −hα
µ∇αnν =

= −∇µnν =

= −1
2
(
∇µnν +∇νnµ

)
=

= −1
2

hα
µhβ

νLngαβ =

= −1
2
Lnhµν

(3.16)

3.3 Variation of the gravitational action with boundary term

Since AdS spacetime possesses a conformal boundary we have to add the Gibbons-
Hawking boundary term

Sgrav = Sbulk + SGH =

=
∫

d4x
√
−g
(

R
2
+ gzz∂µz∂µz + IΛΣFΛ

µνFΣµν −Vg

)
−
∫

d3x
√

hΘ
(3.17)

Varying Sgrav we obtain a bulk part given by the equation of motion as derived in
(C.7) and a boundary term given by

δSbdy =
1
2

∫
∂0M

d3x
√

hnµ Jµ −
∫

∂0M
d3xδ
√

hΘ−
∫

∂0M
d3x
√

hδΘ (3.18)

The last two terms come from varying the Gibbons-Hawking term, whereas the
first one comes from varying the Ricci tensor, which produces a divergence term.
Let’s analyze each term separately.

3.3.1 Divergence term from Ricci tensor

The Jµ term comes from the variation of the Ricci tensor

Rµν = ∂ρΓρ
µν − ∂νΓρ

ρµ + Γρ
ρλΓλ

µν − Γρ
νλΓλ

ρµ (3.19)

δRµν = ∂ρδΓρ
µν − ∂νδΓρ

ρµ + δΓρ
ρλΓλ

µν + Γρ
ρλδΓλ

µν − δΓρ
νλΓλ

ρµ − Γρ
νλδΓλ

ρµ (3.20)

Now we add and subtract the same terms in order to reconstruct the following
covariant derivatives

∇ρδΓρ
µν = ∂ρδΓρ

µν + Γρ
ρλδΓλ

µν − Γλ
ρµδΓρ

λν − Γλ
ρνδΓρ

µλ (3.21)

∇νδΓρ
ρµ = ∂νδΓρ

ρµ + Γρ
νλδΓλ

ρµ − Γλ
νρδΓρ

λµ − Γλ
µνδΓρ

ρλ (3.22)
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Therefore

δRµν = ∂ρδΓρ
µν + Γρ

ρλδΓλ
µν − Γλ

ρµδΓρ
λν − Γλ

ρνδΓρ
µλ + Γλ

ρνδΓρ
µλ+

− ∂νδΓρ
ρµ + Γρ

νλδΓλ
ρµ + Γλ

νρδΓρ
ρµ − Γλ

µνδΓρ
ρλ + Γρ

νλδΓλ
ρµ =

= ∇ρδΓρ
µν −∇νδΓρ

ρµ

(3.23)

Then

1
2

∫
M

d4x
√
−ggµνδRµν =

1
2

∫
M

d4x
√
−ggµν

(
∇ρδΓρ

µν −∇νδΓρ
ρµ

)
=

=
1
2

∫
M

d4x
√
−g∇ρ

(
gµνδΓρ

µν − gµρδΓν
νµ

)
=

=
1
2

∫
M

d4x
√
−g
(
∇ρ Jρ

)
=

=
1
2

∫
∂0M

d3x
√

h
(
nρ Jρ

)
(3.24)

where
Jµ = gαβδΓµ

αβ − gαµδΓβ
αβ (3.25)

where hµν is the induced metric on the boundary as defined in (3.5) and nµ is the
normal vector to the boundary as defined before.
It is useful to prove the following property

δΓµ
αβ =

1
2

gµγ
(
∇αδgβγ +∇βδgαγ −∇γδgαβ

)
(3.26)

In fact

δΓµ
αβ =

1
2

δgµγ
(
∂αgβγ + ∂βgγα − ∂γgαβ

)
+

1
2

gµγ
(
∂αδgβγ + ∂βδgγα − ∂γδgαβ

)
(3.27)

Using the property 1

δgµγ = −gµσgγρδgσρ (3.28)

we can write

δΓµ
αβ = −1

2
gµσgγρδgσρ

(
∂αgβγ + ∂βgγα − ∂γgαβ

)
+

1
2

gµγ
(
∂αδgβγ + ∂βδgγα − ∂γδgαβ

)
=

= −gµσΓρ
αβδgσρ +

1
2

gµγ
(
∂αδgβγ + ∂βδgγα − ∂γδgαβ

)
(3.29)

1It can be easily derived from

gµνgνγ = δgγ
µ =⇒ δ

(
gµνgνγ

)
= 0

Then
gµνδgνγ = −gνγδgµν

gµαgµνδgνγ = −gµαgνγδgµν

δgαγ = −gµαgνγδgµν
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Renaming dummy indexes in the first term and adding and subtracting the same
terms in order to reconstruct the covariant derivatives

δΓµ
αβ =

1
2

gµγ
(

∂αδgβγ + ∂βδgγα − ∂γδgαβ − 2Γρ
αβδgγρ

)
=

=
1
2

gµγ
(
∇αδgβγ +∇βδgαγ −∇γδgαβ

) (3.30)

Now we can rewrite Jµ in a more convenient way

Jµ =
1
2

gαβgµγ
(
∇αδgβγ +∇βδgαγ −∇γδgαβ

)
+

− 1
2

gαµgβγ
(
∇αδgβγ +∇βδgαγ −∇γδgαβ

)
=

=
1
2

gαβgµγ∇αδgβγ +
���

���
��1

2
gγµgαβ∇βδgαβ −

1
2

gαβgµγ∇γδgαβ+

− 1
2

gγβgµα∇αδgβγ −����
���

�1
2

gαµgβγ∇βδgαγ +
1
2

gαµgβγ∇γδgαβ =

= gαβgµγ∇αδgβγ − gαβgµγ∇γδgαβ

(3.31)

3.3.2 Variation of the Gibbons-Hawking term

We have two terms coming from the variation of the Gibbons-Hawking term: δ
√

h
and δΘ.
The first one is easy to handle and it’s equal to

δ
√

h =
1
2

√
hhµνδhµν (3.32)

δΘ is the variation of the trace of the extrinsic curvature Θµν

Θ = Θµνgµν =

= −1
2
∇µnµ − 1

2
∇νnν =

= −∇µnµ =

= −
(

∂µnµ + Γµ
µλnλ

)
(3.33)

Its variation can be calculated as follows

δΘ = −∂µδnµ − Γµ
µλδnλ − δΓµ

µλnλ =

= −∇µδnµ − δΓµ
µλnλ =

= −∇µδnµ − 1
2

gµγ
(
∇µδgβγ +∇βδgµγ −∇γδgµβ

)
nβ

(3.34)
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3.3.3 Complete variation from the boundary terms

We now have all the terms to solve for the variation of the whole boundary term

δSbdy =
1
2

∫
∂0M

d3x
√

hnµ Jµ −
∫

∂0M
d3xδ
√

hΘ−
∫

∂0M
d3x
√

hδΘ =

=
1
2

∫
∂0M

d3x
√

hnµ gαβgµγ
(
∇αδgβγ −∇γδgαβ

)︸ ︷︷ ︸
Jµ

−1
2

∫
∂0M

d3x
√

hhµνΘδhµν+

+
1
2

∫
∂0M

d3x
√

h
(

2∇µδnµ + gµγ
(
∇µδgβγ +∇βδgµγ −∇γδgµβ

)
nβ
)

︸ ︷︷ ︸
δΘ

=

= −1
2

∫
∂0M

d3x
√

hhµνΘδhµν +
1
2

∫
∂0M

d3x
√

hnγgαβ
(
∇αδgβγ −∇γδgαβ

)
+

+
1
2

∫
∂0M

d3x
√

h
(

gµγ
(
∇µδgβγ +∇βδgµγ −∇γδgµβ

)
nβ
)
+

+
∫

∂0M
d3x
√

h
(
∇µδnµ

)
(3.35)

Since the last term is a total derivative on the border, we can neglect it. Instead we
focus on the second and third terms

nµ Jµ + δΘ =
���

���
�

nγgαβ∇αδgβγ −
XXXXXXX
nγgαβ∇γδgαβ + nβgµγ∇µδgβγ+

+
XXXXXXX
nβgµγ∇βδgµγ −����

���nβgµγ∇γδgµβ =

= nβgµγ∇µδgβγ =

= gµγ∇µ

(
nβδgβγ

)
− gµγ∇µnβδgβγ =

= gµγ∇µ

(
δ
(

nβgβγ

)
− δnβgβγ

)
− gµγ∇µnβδgβγ =

= gµγ∇µδnγ − gµγgβγ∇µδnβ − gµγ∇µnβ
(
−gβρgγσδgρσ

)
=

= ���
�∇γδnγ −����

�δ
µ
β∇µδnβ + δ

µ
σ∇µ

(
nβgβρ

)
δgρσ =

= ∇σnρδgρσ =

= −∇σnρgραgσβδgαβ =

= −∇αnβδgαβ =

= Θαβδgαβ

(3.36)

We observe that using the orthogonality relation Θµνnµ = 0 = Θµνnν and (3.5), we
can write

Θαβδgαβ = Θαβδ
(
hαβ + nαnβ

)
=

= Θαβδhαβ + Θαβnα︸ ︷︷ ︸
0

δnβ + Θαβnβ︸ ︷︷ ︸
0

δnα =

= Θαβδhαβ

(3.37)

Finally the variation of the action on the boundary can be written as
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δSbdy =
1
2

∫
∂0M

d3x
√

h (Θµν −Θhµν) δhµν (3.38)

3.4 Regulated boundary stress-energy tensor

The quasilocal energy, (see [41], [42], [43]) is associated with the boundary stress-
energy tensor, defined as

Tµν =
2√
h

δSgrav

δhµν
(3.39)

Given the variation of the regulated on-shell action δSgrav = δSbdy calculated in
(3.38) it is straightforward to derive the stress-energy tensor

Tµν = (Θµν −Θhµν)

∣∣∣∣
r0

(3.40)

The mass is calculated from the tt component of Tµν following the definition of
a Komar charge, as in [2]. A Komar charge makes sense when we have a killing
vector field, which in this case is ∂t. Since time translations are related to energy
conservation and given the general relativity mass-energy equivalence it makes
sense that the Komar quantity associated with the time Killing vector represents
the mass. Thus we integrate over a constant t surface on the boundary ∂0M

Mreg = QK =
1

8π

∫
Σ

d2x
√

σuµTµνKν (3.41)

where Σ is a spacelike section of the boundary ∂0M and σ is the metric induced on
Σ. uµ is the unit normal vector to Σ defined as

uµ = (
√

htt, 0, 0, 0); uµ = (
√

htt, 0, 0, 0) (3.42)

and Kµ is the killing vector associated to time translations and thus to conserved
energy

Kµ = (1, 0, 0, 0); Kµ = (htt, 0, 0, 0) (3.43)

σµν =

(
−e−Kr2 0

0 −e−Kr2 sin2 θ

)
(3.44)
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Then the regular part of the mass term is comuted as

Mreg =
1

8π

∫ 2π

0
dφ
∫ π

0
dθ
(

e−Kr2 sin θ
)

︸ ︷︷ ︸√
σ

(
eK/2

√
f
)

︸ ︷︷ ︸
ut

(
Θtt − httΘ

)︸ ︷︷ ︸
Ttt

(
eK f
)

︸ ︷︷ ︸
Kt

(3.45)

Θ is the trace of the extrinsic curvature as defined in (D.28) and Θtt is its tt compo-
nent. They are given by 2

Θ = eK/2
√

f
(

f ′

2 f
+

2
r
− K′

2

)
(3.46)

Θtt = htteK/2
√

f
(

K′

2
+

f ′

2 f

)
(3.47)

where K and f are as defined respectively in (2.20) and (2.14). Putting these values
in (3.45) produces 3

Mreg =
1

8π
4πr2 f

(
K′ − 2

r

)
=

=
1
2

r2 f
( −Q2

1
r(r− 3Q1)(r + Q1)

− 2
r

)
=

= −r f
(

r2 − 2rQ1

(r− 3Q1)(r + Q1)

)
=

= −r f
(

1 +
3Q2

1
r2 +

6Q3
1

r3 + O
(

1
r4

))
=

= −r− c1 −
r3

l2
AdS

+
8Q3

1

l2
AdS
− 3Q2

1r
l2
AdS
−

6Q3
1

l2
AdS

=

= −r− c1 −
r3

l2
AdS

+
3Q2

1r
l2
AdS

+
2Q3

1

l2
AdS

(3.48)

Then we have the following value for the regular part of the mass term

Mreg = −r− c1 −
r3

l2
AdS

+
3Q2

1r
l2
AdS

+
2Q3

1

l2
AdS

(3.49)

3.5 Counterterms and Finite Terms

In order to get rid of the linear and cubic divergencies appearing in Mreg, we should
add a counterterm Sct to the action Sgrav.

2The explicit calculations are performed in the Appendix D
3Remember the expansion

(1 + x)α = 1 + αx +
α(α− 1)

2
x2 +

α(α− 1)(α− 2)
6

x3 + ...
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The contribution to the mass term is analogous to the computation in (3.41), using
the counterterm stress-energy tensor Tµν

ct , defined as

Tµν
ct =

2√
h

δSct

hµν
(3.50)

In addition to this we should impose specific boundary conditions on the scalar
field as discussed in 2.3.2. The specific form of Sct is different in the two work that
we are comparing as well as the choice of boundary conditions.

3.5.1 Gnecchi-Toldo (GT) prescription

In [2] it is suggested to take the following form for Sct

Sct,GT =
∫

∂M0

d3x
√

h
(
−W(ϕ) + Z(ϕ)R(3)

)
(3.51)

where W(ϕ) is the superpotential

W(ϕ) = − 2
lAdS

(
1 +

ϕ2

4

)
, (3.52)

Z(ϕ) is a function defined as

Z(ϕ) ∼ − lAdS

2(d− 2)
, (3.53)

and R(3) is the Ricci scalar defined on ∂M0 and explicitly calculated in (D.5).
Varying Sct we obtain

δSct,GT =
∫

∂M0

d3x
[
δ
√

h
(
−W(ϕ) + Z(ϕ)R(3)

)
+
√

hZ(ϕ)
(

δRµν

(3)hµν +Rµν

(3)δhµν

)]
=

=
∫

∂M0

d3x
1
2

√
hhµνδhµν

(
−W(ϕ) + Z(ϕ)R(3)

)
+
∫

∂M0

d3x
√

hZ(ϕ)Rµν

(3)δhµν+

+
∫

∂M0

d3x
√

hZ(ϕ)hµνδRµν

(3) =

=
1
2

∫
∂M0

d3x
√

h
(
−W(ϕ)hµν + Z(ϕ)

(
hµνR(3) + 2Rµν

(3)

))
δhµν

(3.54)
since the last term is a total divergence on the boundary ∂0M and does not con-
tribute.
Then

Tµν
ct,GT = −W(ϕ)hµν + Z(ϕ)

(
hµνR(3) + 2Rµν

(3)

)
(3.55)
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Now we can calculate the counterterm contribution to the mass

Mct,GT =
1

8π

∫
Σ

d2x
√

σuµTµν
ct Kν =

=
1

8π

∫ 2π

0
dφ
∫ π

0
dθ
(

e−Kr2 sin θ
)

︸ ︷︷ ︸√
σ

(
eK/2

√
f
)

︸ ︷︷ ︸
ut

(
−W(ϕ)htt + Z(ϕ)httR(3)

)
︸ ︷︷ ︸

Ttt
ct

(
eK f
)

︸ ︷︷ ︸
Kt

=

= −1
2

e−K/2r2
√

f W(ϕ)︸ ︷︷ ︸
I1

+
1
2

e−K/2r2
√

f Z(ϕ)R(3)︸ ︷︷ ︸
I2

(3.56)
where we have used the fact that Rtt

(3) = 0.
Substituting the values for ϕ from (2.81), W(ϕ) from (3.52), Z(ϕ) from (3.53) and
R(3) from (D.5), we obtain

I1 = −1
2

e−K/2r2
√

f W(ϕ) =

=
1
2

(
(r + Q1)

3(r− 3Q1)

r4

)1/4

r2 r
lAdS

(
1 +

l2
AdS
2r2 +

c1l2
AdS

2r3 +
c2l2

AdS
2r4 − 3Q2

1
r2 −

4Q3
1

r3 −
3Q4

1
r4

)
·

·
(

2
lAdS

)(
1 +

3Q2
1

2r2 +
3Q3

1
r3 +

3
2

Q4
1

r4

)
=

=
r2

l2
AdS

r
(

1− 6
4

Q2
1

r2 −
8
4

Q3
1

r3 −
3
4

Q4
1

r4

)(
1 +

l2
AdS
2r2 +

c1l2
AdS

2r3 +
c2l2

AdS
2r4 − 3Q2

1
r2 −

4Q3
1

r3 −
3Q4

1
r4

)
·

·
(

1 +
3Q2

1
2r2 +

3Q3
1

r3 +
3
2

Q4
1

r4

)
=

=
r3

l2
AdS

+
r
2
+

c1

2
− 3Q2

1r
l2
AdS
−

3Q3
1

l2
AdS

(3.57)

I2 =
1
2

e−K/2r2
√

f Z(ϕ)R(3) =

=
1
2

e−K/2r2 r
lAdS

(
1 +

l2
AdS
2r2 +

c1l2
AdS

2r3 +
c2l2

AdS
2r4 − 3Q2

1
r2 −

4Q3
1

r3 −
3Q4

1
r4

)(
− lAdS

2

)(
2eK

r2

)
=

=
r
2

(
r4

r4 − 6r2Q2
1 − 8rQ3

1 − 3Q4
1

)1/4(
1 +

l2
AdS
2r2 +

c1l2
AdS

2r3 +
c2l2

AdS
2r4 − 3Q2

1
r2 −

4Q3
1

r3 −
3Q4

1
r4

)
=

=
r
2

(3.58)
So

Mct,GT = r +
c1

2
+

r3

l2
AdS
− 3Q2

1r
l2
AdS
−

3Q3
1

l2
AdS

(3.59)
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Mixed boundary conditions are imposed on the scalar field as defined in (2.88).
This shifts the mass by a finite term given by

Mfin,GT =
1

8π

∫
∂M0

√
h(0)h

(0)
tt f̃ (ϕ−) =

=
1

8π

∫ 2π

0
dφ
∫ π

0
dθ
(
l2
AdS sin θ

)︸ ︷︷ ︸√
h(0)

(1)︸︷︷︸
h0

tt

(
2

Q3
1

l4
AdS

)
︸ ︷︷ ︸

f̃ (ϕ−)

(3.60)

Mfin,GT =
Q3

1

l2
AdS

(3.61)

Therefore

MGT = − c1

2
(3.62)

3.5.2 Halmagyi-Lal (HL) prescription

In [1] it is suggested to use only a part of the superpotential4W written in terms of
symplectic invariants as follows

Sct,HL =
∫

∂M0

d3x
√

h
(

2Im
(

eiαL
)
+ Z(ϕ)R(3)

)
(3.64)

where L is given in (A.37), Z is given in (3.53) and R(3) is calculated in (D.5).
The contribution to the mass term is analogue to (3.56). The I1 part only changes
as follows

I1,HL = =
1
2

e−K/2r2
√

f (2L) =

= r2

(
r

l2
AdS

(
1 +

1
2

l2
AdS
r2 +

1
2

c1l2
AdS

r3 + c2
l2
AdS
2r4 − 3

Q2
1

r2 − 4
Q3

1
r3 − 3

Q4
1

2r4

))
=

=
r3

l2
AdS

+
r
2
+

c1

2
− 3Q2

1r
l2
AdS
−

4Q3
1

l2
AdS

(3.65)
Then

Mct,HL = r +
c1

2
+

r3

l2
AdS
− 3Q2

1r
l2
AdS
−

4Q3
1

l2
AdS

(3.66)

4Here the superpotential is written as

W = h2UIm
(

e−iαL
)
+ URe

(
e−iαZ

)
(3.63)

where h and U are the metric warp factor as defined respectively in (2.8) and (2.7), α is the su-
persymmetry phase factor as defined in (B.8) and L and Z are special geometry quantities defined
respectively in (A.37) and (A.49).
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Halmagyi suggests Neumann boundary condition for the scalar field as defined in
(2.87). Thus the finite shift in this case is given by

Mfin,HL =
6Q3

1

l2
AdS

(3.67)

where we have used (2.90).
Finally we have the following value for the mass following the prescription in [1]

MHL = − c1

2
+

4Q3
1

l2
AdS

(3.68)

50



4 Entropy and Extremization
Principle

In this chapter we are going to address the main objective of this thesis. We are
going to compare [1] and [2] with respect to the validity of

Son−shell

∣∣∣∣
BPS

= −S (4.1)

(4.1) serves for consistency in the context of microscopic counting for the entropy
of AdS black holes and the so-called extremization principle.

Microscopic counting and extremization principle

Considering a generic black hole in AdS, we have that microscopic counting is done
on the field theory side. Extremal supersymmetric AdS black holes are considered
and their entropy is calculated by counting the BPS states of the dual field theory,
having the same amount of supersymmetry as the black hole and living on the
conformal boundary of AdS (see review [15]). Counting the BPS states of the CFT
results in evaluating its grancanonical partition function Z

Z(∆i, ωj) = ∑
qi ,ji

c(qi, jj)ei(∆iqi+ωj jj) (4.2)

where qi are the electric charges, jj the angular momenta, while ∆i and ωj are their
respective conjugated chemical potentials. c(qi, jj) represents the number of states
of given qi and jj. Thus the entropy of the AdS black hole is given by

S(qi, jj) = log c(qi, jj) (4.3)

S(qi, jj) can be calculated from (4.2) as a Fourier coefficient. In the limit of large
charges (large N) the computation can be reduced to a saddle point approximation

S(qi, jj) =
[
logZ(∆i, ωj)− i(∆iqi + ωj jj)

]
|∆̄i ,ω̄j

(4.4)
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where ∆̄i, ω̄j are the values obtained extremizing the functional on the right hand
side of (4.4). This is what is referred to as the extremization principle.
On the other hand, we have that the holographic dictionary relates the dual quan-
tum field theory partition function to the gravitational on-shell action Son−shell,
when approximating the last one to the free energy

ZCFT = e−βΩ ∼ e−Son−shell (4.5)

where Ω is the free energy.

Considering static and magnetically charged black holes, we have analyzed in this
work, we have the thermodynamic relation between the black hole entropy and the
field theory partition function on one side, and the holographic equivalence of the
partition function and the on-shell gravitational action, on the other. It follows that
the on-shell gravitational action should, in turn, reproduce (minus) the black hole
entropy. The equivalences can be summarized in the following

Son−shell = − log ZCFT = −S (4.6)

The clarification of these relations was the starting point for the work in [1]. Here
we are going to analyze [1], which states the validity of (4.1), using the solution in
[2].
In the first part we directly compute the on-shell gravitational action by means of
the one-dimensional reduction procedure. We are checking both the correspon-
dence between the value of the on-shell action and the free energy (which for the
case in exam is the Helmholtz free energy ([2])

Son−shell = βΩ (4.7)

and (4.1).
We conclude with a brief remark on BPS bounds for the mass of magnetic black
holes and some observations regarding the first law of thermodynamics.

4.1 The on-shell action

We shall now directly evaluate the on-shell action. Remember that we are consid-
ering

8πG = 1 (4.8)

To do so we will write the one-dimensional effective action, ([1], [35]), using the
relations (C.16), (C.17) and (C.18), which we report here for convenience:

gzz∂rz∂rz = −h′′

h
(4.9)
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Vg =
1

2h2

(
1− 1

2
(U2h2)′′

)
(4.10)

VBH =
1
2

h2 (1−U2h′2 − hh′′U2 + h2U′2 + h2UU′′
)

(4.11)

From now on we are going to deal with the euclidean action related to the Minkowskian
by a minus sign

Seuclidean = −SMinkowski (4.12)

The euclidean action is periodic in time with period β.
Therefore the dimensionally reduced action becomes

Sbulk = −β
∫

d3x
√
−g
(

R
2
+ gzz∂µz∂µz + IΛΣFΛ

µνFΣµν −Vg

)
=

= −β
∫ 2π

0
dφ
∫ π

0
dθ sin θ

∫ r0

r+
h2
[

1
h2

(
1− h2U′2 −U2(h′2 + 2hh′′)+

− hU(4h′U′ + hU′′)
)
+

h′′

h
U2 − VBH

h4 −
1

2h2

(
1− 1

2
(U2h2)′′

) ]
=

= (−4πβ)
∫ r0

r+
dr
[
−
(
h2U′2 + h2UU′′ + 2hh′UU′

)]
=

= (4πβ)
∫ r0

r+
dr
[

1
2
(
h2(U2)′

)′]
(4.13)

where r0 is the radial cut-off as explained in chapter 3.
The bulk contribution is a total derivative term:

Sbulk = (4πβ)

[
h2UU′

∣∣∣∣
r0

− h2UU′
∣∣∣∣
r+

]
(4.14)

We have both a boundary and a horizon terms. Let’s evaluate the horizon term:

h2UU′
∣∣∣∣
r+

= 2ST (4.15)

where S is the entropy as in (2.59) and T is the temperature as in (2.55).
Before evaluating the boundary contribution, we should first combine it with the
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Gibbons-Hawking term. 1

SGHY = −β
∫

r0

d2x
√

hΘ =

= (4πβ)
[
−2hh′U2 − h2UU′

] ∣∣∣∣
r0

(4.16)

We note that the h2UU′ term cancels and we are left with

Sr∞ = (8πβ)
[
−hh′U2]

r0
=

= (8πβ)

[(
e−K/2r

)(
e−K/2

(
−1 +

K′

2
r
))(

eK f
)]

r0

=

= (8πβ)

[
−r f +

r2

2
f K′
]

r0

=

= (8πβ)

[
−r− c1 −

r3

l2
AdS

+
3Q2

1r
l2
AdS

+
2Q3

1

l2
AdS

]
r0

=

= 8πβ

[
−r− c1 −

r3

l2
AdS

+
3Q2

1r
l2
AdS

+
2Q3

1

l2
AdS

]
r0

(4.17)

The boundary term shows linear and cubic divergencies. We shall get rid of them
by adding appropriate counterms. Let’s analyze two proposals, the one in [1] and
the one in [2], in analogy with what already done in chapter 3.

4.1.1 Gnecchi-Toldo (GT) prescription

Now we analyze the proposal as in [2]. We report here the counterterm action

Sct,GT =
∫

r0

d3x
√

h
[
−W(ϕ) + ZR(3)

]
(4.18)

1In the following we show how to write the
√

hΘ term using the metric warp factors. Θ is as
derived in (D.28) and √

h = r2√ f e−K/2 sin θ

So we have
√

hΘ = sin θr2 f
(

f ′

2 f
+

2
r
− K′

2

)
Remembering that the warp factors of the metric are given by h = e−K/2r and U = eK/2√ f , notice
that

2Uh′ + U′h =
√

f r
(

f ′

2 f
+

2
r
− K′

2

)
Then √

hΘ = sin θ
(

2U2hh′ + h2UU′
)
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We use the same values for Z and R(3) as in Chapter 3, and W(ϕ) is as in (3.52):

Sct,T = (4πβ)

[
2

lAdS
e−K/2r2

√
f
(

1 +
ϕ2

4

)
+ eK/2lAdS

√
f
]

r0

=

= (8πβ)

[
r3

l2
AdS

+
c1

2
− 3Q2

1r
l2
AdS

+ r−
3Q3

1

l2
AdS

]
r0

(4.19)

In this case, for the total action we obtain

Son−shell = Sbulk + Sr∞ + Sct,T =

= β

[
−S

β
− c1

2
−

Q3
1

l2
AdS

]
(4.20)

Adding a finite term for mixed boundary conditions (see equations (2.88) and
(3.61)), we get

Son−shell,GT = β

(
−S

β
− c1

2

)
(4.21)

which satisfies the holographic relation between temperature and free energy, but
does not satisfies (4.1), since the mass term does not vanish in the limit.

Son−shell,GT

∣∣∣∣
BPS

= lim
T→0

c1→
8Q3

1
l2AdS

(
−S− 4β

Q3
1

l2
AdS

)
(4.22)

4.1.2 Halmagyi-Lal (HL) prescription

We now analyze the counterterms proposed in [1], which we report here for conve-
nience

Sct,H =
∫

r0

d3x
√

h
[
2Im

(
e−iαL

)
+ ZR(3)

]
(4.23)

Using (B.8), (B.33), (D.5) and (3.53), we obtain

Sct,H = (−β) (4π)

[
−2Uh2eK/2

lAdS
− 2lAdSUh2

2h2

]
r0

=

= (4πβ)

[
2r2

lAdS

√
f + lAdSeK/2

√
f
]

r0

=

= (4πβ)

[
2r3

l2
AdS

+ c1 −
8Q3

1

l2
AdS

+ 2r− 6Q2
1r

l2
AdS

]
r0

=

= 8πβ

[
r3

l2
AdS

+
c1

2
−

4Q3
1

l2
AdS

+ r− 3Q2
1r

l2
AdS

]
r0

(4.24)

Summing up all the contributions and taking the r0 → ∞ limit, we get

Son−shell = β

(
−S

β
− c1

2
−

2Q3
1

l2
AdS

)
(4.25)
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where we have set 8π = 1.
Adding the finite term coming from imposing Neumann boundary conditions (see
equations (2.87) and (3.67)) we end up with

Son−shell,HL = β

(
−S

β
− c1

2
+

4Q3
1

l2
AdS

)
(4.26)

Notice that the holographic relation between the on-shell action and the free energy
Ω = M− TS

Son−shell = βΩ (4.27)

is satisfied.
Moreover taking the extremal limit we do recover the extremization principle as the
mass term goes to zero

MHL|BPS = lim
c1→

8Q3
1

l2AdS

(
− c1

2
+ 4

Q3
1

l2
AdS

)
= 0 (4.28)

Then (4.1) holds

Son−shell,HL

∣∣∣∣
BPS

= −S (4.29)

Some observations on thermodynamics

We are now going to analyze the validity of the first law of thermodynamics which
for magnetic black holes can be restated as

dM = TdS + χΛdpΛ (4.30)

We are going to consider the two different mass values, MGT and MHL as respec-
tively given in (3.62) and (3.68). We refer to chapter 2 for the values of magnetic
charges pΛ, magnetostatic potentials ξΛ, temperature T and entropy S.
With these quantities at hand we have that

• Fot the Gnecchi-Toldo mass the first law of thermodynamics is valid and con-
tinues to hold in the extremal limit. We report here the quantities comparing
in (4.30) and their respective extremal limits

MGT = − c1

2
−−→
BPS

−
4Q3

1

l2
AdS

(4.31)
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T =
1

4π
eK(r) d f (r)

dr

∣∣∣∣
r=r+

−−→
BPS

1
4π

eK(r) d f (r)
dr

∣∣∣∣
r=rh

= 0 (4.32)

S = S = πr2
+e−K(r+) −−→

BPS
S = πr2

he−K(rh) (4.33)

where

rh =

√
3Q2

1 −
l2
AdS
2

(4.34)

At last we give the expressions for the magnetic charges and the magnetostatic
potentials, which agree with those of [2]

p0 = ± 1
2lAdSg0

√
c2 + 3Q1(3Q1 + c1) −−→

BPS
− 1

4g0
− 3Q2

1

g0l2
AdS

(4.35)

p1 = ± 3
2lAdSg1

√
c2 + Q1(Q1 − c1) −−→

BPS
− 3

4g1
+

3Q2
1

g1l2
AdS

(4.36)

χ0 = g2
0l2

AdS
p0

r+ − 3Q1
−−→
BPS

g2
0l2

AdS
p0

rh − 3Q1
(4.37)

χ1 = g2
1l2

AdS
p1

3(Q1 + r+)
−−→
BPS

g2
1l2

AdS
p1

3(Q1 + rh)
(4.38)

where c2 satisfies

c2 = −(c1 + r+)r+ −
1

l2
AdS

(r+ − 3Q1) (Q1 + r+)
3 (4.39)

In the BPS limit we have only one independent variable Q1, since c1 becomes
a function of Q1, while at finite temperature we should variate each quantity
with respect to both c1, Q1. We obtain

– Varying with respect to c1

dMGT

dc1
= −1

2
; T

dS
dc1

= 0; χ0
dp0

dc1
+ χ1

dp1

dc1
= −1

2
(4.40)

– Varying with respect to Q1

dMGT

dQ1
= 0; T

dS
dQ1

=
−3Q1

(
c1l2

AdS − 8Q3
1 + 2l2

AdSr+ − 12Q2
1r+ + 4r3

+

)
2l2

AdS (r+ − 3Q1) (r+ + Q1)

χ0
dp0

dQ1
+ χ1

dp1

dQ1
=

3Q1
(
c1l2

AdS − 8Q3
1 + 2l2

AdSr+ − 12Q2
1r+ + 4r3

+

)
2l2

AdS (r+ − 3Q1) (r+ + Q1)
(4.41)

All the differentials cancel exactly and so the first law of thermodynamics
holds for any T.
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• If we consider the mass obtained with the Halmagyi-Lal procedure, while
maintaining all the other quantities as in Toldo, then

MHL = − c1

2
+

4Q3
1

l2
AdS
−−→
BPS

0 (4.42)

So

dMHL = −1
2

dc1 + 12
Q2

1

l2
AdS

dQ1 (4.43)

Thus we have that this does not satisfy the first law of thermodynamics.

We shall analyze this considering the works in [21] and [22]. Here BPS bounds for
the mass of black holes in anti-de Sitter spacetime are analyzed. They are based on
the previous results of [40] and [18], but put a special attention when the magnetic
charges are present, as is our case.
It is shown that when black holes are magnetically charged the BPS bound for the
mass is given by

M ≥ 0 (4.44)

Indeed the Halmagyi-Lal mass saturates this BPS bound and this is the reason why
their solution satisfies the relation (4.1) in the first place.
The Gnecchi-Toldo mass, instead, even when evaluated at the extremal limit lies
above the BPS bound and this prevents the validity of (4.1), but satisfies the first
law of thermodynamics.

The fact that the mass saturating the BPS limit was not the mass satisfying the
first law of thermodynamics was already noted, as a marginal note, in [44].
The reason might reside in the way the magnetostatic potentials, χΛ are computed
(see (2.48)).
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5 Conclusions

In this thesis we dealt with static, magnetically charged AdS4 black holes with a
spherical horizon, arising from N = 2 Fayet-Ilioupoulos supergravity, in order to
analyze their thermodynamic properties.

We gave a brief introduction on black hole thermodynamics, described the main
characteristics of N = 2 gauged supergravity and of the class of magnetic black
holes we were considering. In particular, we focused on the holographic renormal-
ization technique to compute the black hole mass and the on-shell action, as they
were fundamental for testing the relation between the on-shell gravitational action
and the black hole entropy in the BPS limit.

The main theme was the comparison of the works by Gnecchi and Toldo, [2], and
the one by Halmagyi and Lal, [1]. The scope was to resolve the apparent contradic-
tion in the validity of

Son−shell

∣∣∣∣
BPS

= −S (5.1)

which should follow for consistency, when considering the thermodynamic relation
between the black hole entropy and the dual field theory partition function, on one
side, and the holographic correspondence between the dual field theory partition
function and the on-shell gravitational action, on the other.

In [1] it is stated that (5.1) holds for generic black holes in AdS4 coupled to running
scalars, once the on-shell action has been properly renormalized by means of the
holographic renormalization technique. Nevertheless, when testing the solution in
[2], which describes the particular class of magnetic AdS4 black holes with running
scalars, we have analyzed here, the relation (5.1) does not hold.
The reason is to be found in both the choice of right counterterms to get rid of the
infrared divergencies and in the choice of the boundary conditions for the scalar
field. This last one has a mass in that allows for both Neumann and mixed bound-
ary conditions.

We have found that the counterterms and boundary conditions (Neumann) adopted
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in [1], lead to a mass saturating the BPS bound for the mass of magnetic black holes
and thus (5.1) is satisfied. The counterterms and boundary conditions (mixed) used
in [2], produce, instead, a mass term that in the extremal limit lies above the BPS
bound and does not satisfy the relation (5.1) for the entropy.
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A Special Kähler Geometry

The scalars zi in the vector multiplets of N = 2 supergravity theories in d = 4
dimensions exhibit special Kähler geometry as they parametrize a special Kähler
manifold.
The general form of kinetic terms of the vector fields is given by

Lkin = (ImNΛΣ) FΛ
µνFΣµν +

1
2
(ReNΛΣ) εµνρσFΛ

µνFΣ
ρσ (A.1)

where the symmetric matrixNΛΣ, called period matrix, depends on the scalar fields
and FΛ

µν are the field strengths of the vector fields. The imaginary part of the ma-
trix N should be negative definite in order to provide the right sign for the kinetic
term.
The period matrix is a link between the scalar and the vector sectors of the the-
ory. The duality transformations, which regard the spin-1 fields field strengths and
which take the form of symplectic transformations, impose constraints on the scalar
fields which are central to the special geometry properties.

A.1 Symplectic Structure of a Special Kähler Manifold

A special Kähler manifold is a nV dimesional Hodge-Kähler manifold (where nV is
the number of vector multiplets coupled to the gravity multiplet), which is the base
of a symplectic bundle described by covariantly holomorphic sections, XΛ and FΛ.
The sections are holomorphic functions of the scalar fields zi.

V =

(
LΛ

MΛ

)
= eK/2

(
XΛ

FΛ

)
(A.2)

K = K(zi, z̄ī) is the Kähler potential and it is defined in terms of the sections as

K = − log[i(X̄ΛFΛ − XΛ F̄Λ)] (A.3)

The corresponding Kähler metric is

gi j̄ = ∂i∂ j̄K (A.4)
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where i, j̄ denote, respectively, the derivative with respect to zi and z̄ j̄, which in turn
is the complex conjugate of zj.
Under certain conditions there exists a second degree homogeneous function F(X),
called the prepotential, such that

FΛ = ∂ΛF (A.5)

For the model adopted in this work the prepotential is given by

F(X) = −2i
√

X0(X1)3 (A.6)

When there is a prepotential the period matrix can be derived from the following
relation

NΛΣ = F̄ΛΣ + 2i
Im(FΛ∆)X∆Im(FΣΦ)XΦ

X∆Im(F∆Φ)XΦ (A.7)

with
FΛΣ = ∂Λ∂ΣF (A.8)

Otherwise it is implicitly defined by the following matrix relations

MΛ = NΛΣLΣ, h̄Λ,ī = NΛΣ f̄ Σ
ī (A.9)

N =

(
h̄Λ,ī

MΛ

)
·
(

f̄ Σ
ī

LΣ

)−1

(A.10)

with

Ui ≡ DiV ≡
(

∂i +
1
2

∂iK
)
V ≡

(
f Λ
i

hi,Λ

)
(A.11)

Ūī ≡ DīV̄ ≡
(

∂ī +
1
2

∂īK
)
V̄ ≡

(
f̄ Λ
ī

h̄ī,Λ

)
(A.12)

Using these notations we can write the scalar potential that appears in (2.5) as

Vg = (gi j̄ f Λ
i f̄ Σ

j̄ − 3L̄ΛLΣ)gΛgΣ (A.13)

A.1.1 Special Kähler Manifold Properties

Denoting the symplectic scalar product as

〈A, B〉 = ATΩB = AΛBΛ − AΛBΛ (A.14)

with

Ω =

(
O −1

1 O

)
(A.15)
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a set of useful properties can be derived.
The Kähler potential can be written as

K = − log[i〈V , V̄ 〉] (A.16)

and the following constraints hold

〈V , ∂iV〉 = 0 (A.17)

〈V , V̄ 〉 = i (A.18)

〈Ui, Ūj̄〉 = igi j̄ (A.19)

A.2 Special Kähler Quantities for F = −2i
√

X0(X1)3

Given the prepotential, F = −2i
√

X0(X1)3, we can compute the period matrix
using (A.7) and (A.8). We considering only one vector multiplet (nV = 1) and no
hypermultiplets, with a real scalar z, defined as

z =
X1

X0 (A.20)

We have that Λ, Σ = 0, 1. We concentrate on gaugings with Fayet-Iliopoulos (FI)
terms, ξΛ, which determine the electric charges of the gravitini

eΛ ≡ gΛ ≡ gξΛ (A.21)

subject to the Dirac quantization in the presence of magnetic charges

gΛ pΛ = ±1 (A.22)

where pΛ are the magnetic charges. In this work we have indeed studied static and
magnetically charged only black holes. Thus the theory is gauged only electrically
and the FI terms can be thought of as the electric charges of the gravitino fields.
The components of the FΛΣ matrix are given by

F00 =
i
2

z3/2; F01 = F10 = −3
2

i
√

z; F11 =
3
2

i
1√
z

(A.23)

Therefore the period matrix is computed using (A.7)

NΛΣ = i

−√ (X1)3

(X0)3 0

0 −3
√

X0

X1

 = i

(
−z3/2 0

0 − 3√
z

)
(A.24)

We observe that we have indeed obtained a purely imaginary period matrix.
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Given the sections XΛ

XΛ =

(
X0

X1

)
(A.25)

we can derive the FΛ sections using (A.5)

FΛ = i

(
−
√

(X1)3

X0

−3
√

X0X1

)
(A.26)

Observation So far all the quantities we have calculated depended only on the ratio
X1/X0 and not on the specific choice of the sections.

Requiring that z = X1/X0, we can rewrite the sections and their complex conjugate
as

XΛ =

(
1
z

)
X̄Λ =

(
1
z̄

)
(A.27)

and

FΛ =

(
−iz3/2

−3i
√

z

)
F̄Λ =

(
iz̄3/2

3i
√

z̄

)
(A.28)

Therefore the Kähler potential 1 can be calculated using (A.16)

K(z, z̄) = − log[i(X̄ΛFΛ − XΛ F̄Λ)]

= − log
[
i
(

1
(
−iz3/2

)
+ z̄

(
−3i
√

z
)
− 1

(
iz̄3/2

)
− z

(
3i
√

z̄
))]

= − log
[
z3/2 + 3z1/2z̄ + 3zz̄1/2 + z̄3/2

]
= − log

[(√
z +
√

z̄
)3
] (A.29)

1The choice of the sections is not unique. It is only required that X1/X0 = z. In fact we could have
leaved X0 general and as a consequence we have obtained a potential of the form

K(z, z̄) = − log
[

X̄0X0
(√

z +
√

z̄
)3
]

The resulting metric would have been the same as (A.31) since the metric gi j̄ is invariant under the
so-called Kähler transformations

K → K′ = K + f (z) + f̄ (z̄)

If we are choosing real sections, then the Kähler potential becomes

K = − log

(X0
)2

8

√(
X1

X0

)3
 = − log

[
8
√(

X1
)3 X0

]

Therefore

e−K = 8
√(

X1
)3 X0

which can be written in general as

e−K = β2
√(

X1
)3 X0
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K(z, z̄) = − log
[(√

z +
√

z̄
)3
]

(A.30)

Then the metric on the Kähler manifold is given by (A.4)

gi j̄ = gzz̄ =
3

4(
√

z +
√

z̄)
√

zz̄
(A.31)

Since we are considering a real scalar

z = z̄ (A.32)

then

K(z, z̄) = K(z) = − log(8z3/2) (A.33)

and

gzz̄ = gzz =
3

16z2 (A.34)

The sections (A.2) computed using the proposed parametrization become

V =

(
LΛ

MΛ

)
= eK/2


1
z

−i
√

z3

−3i
√

z

 (A.35)

and the scalar potential can be calculated using

Vg = −3 |L|2 + gi j̄∂iL∂ j̄L̄ (A.36)

where

L = 〈G,V〉 = gΛLΛ = eK/2gΛXΛ = L̄ (A.37)

and

∂i (L) = ∂z (L) = −
−
√

2g1z + 3
√

2g0

16z7/4 (A.38)

and the symplectic vector

G = (gΛ, gΛ)
T (A.39)

parametrizes tha gauging, which is electric only in the case in analysis (gΛ = 0).
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Then

Vg = −3 |L|2 + gzz (∂zL)2

= −3eK
(

g2
0
(
X0)2

+ g2
1

(
X1
)2

+ 2g0g1X0X1
)
+

16z2

3

(
−
√

2g1z + 3
√

2g0

16z7/4

)2

= −1
3

g2
1
√

z− g0g1
1√
z

= −g2
(

ξ0ξ1√
z
+

ξ2
1

3
√

z
)

(A.40)
Note that there is no need to specify a specific form for XΛ in order to calculate Vg

as it depends only on the ratio.

Vg = −g2
(

ξ0ξ1√
z
+

ξ2
1

3
√

z
)

(A.41)

It is straightforward to verify that Vg yields to a negative cosmological constant Λ.
In fact

∂z
(
Vg
)
= −g2

(−3ξ0ξ1 + ξ2
1z

6z3/2

)
= 0 =⇒ z∞ = 3

ξ0

ξ1
(A.42)

Then

Vg(z∞) = −3g2

√
4
27

ξ0ξ3
1 = − 3

l2
AdS

(A.43)

A useful quantity is given by the following matrix

M =

(
ImN + ReN (ImN )−1ReN −ReN (ImN )−1

−ReN (ImN )−1 (ImN )−1

)
(A.44)

which in our case reduces to

M =

(
ImN 0

0 (ImN )−1

)
=


−z3/2 0 0 0

0 − 3√
z 0 0

0 0 −z−3/2 0
0 0 0 −

√
z

3

 (A.45)

The matrix M is useful to compute VBH, which is a quantity comparing in the
Einstein equation of motion

VBH ≡ −
1
2
QTMQ (A.46)
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where Q is the symplectic vector containing the charges

Q =

(
pΛ

qΛ

)
(A.47)

with pΛ denoting the magnetic charges ad qΛ the electric ones, which in the case at
hand are set to zero.
Computing (A.46) gives

VBH = −1
2

pΛ(ImNΛΣ)pΣ =
1
2

(
(p0)2z3/2 + 3(p1)2 1√

z

)
(A.48)

There is an equivalent definition tat uses the central charge defined as

Z ≡ 〈Q,V〉 (A.49)

In this terms the black hole potential reads

VBH = |DiZ|2 + |Z|2 (A.50)

For our case
Z =

i
2
√

2

(
p0z3/4 + 3p1z−1/4

)
(A.51)

DiZ =

(
∂z +

1
2

∂zK
)
Z

= ieK/2
(

∂z

(
p0z3/2 + 3p1z1/2

)
+ ∂zK

(
p0z3/2 + 3p1z1/2

))
=

3i
8
√

2

(
p0z−1/4 − p1z−5/4

) (A.52)

Then
VBH = |Z|2 + gzzDzZDzZ

=
1
2

(
(p0)2z3/2 + 3(p1)2 1√

z

) (A.53)

in agreement with the result in (A.48).
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A.3 Table of special Kähler quantities

Quantity Our convention

Symplectic sections V V =

(
LΛ

MΛ

)
= eK/2

(
XΛ

FΛ

)
Real sections XΛ XΛ = 1

2
√

2

(
aΛ + bΛ

r

)
Imaginary sections FΛ = ∂ΛF FΛ = −i

√ (X1)3

(X0)3

3
√

X0

X1


Prepotential F F = −2i

√
X0(X1)3

Scalar field (real) z z = X1

X0

Kähler potential K(z, z̄) = K(z) K(z) = − log
[
8
√
(X1)3X0

]
Kähler metric gzz̄ = gzz gzz =

3
16z2

Coefficients aΛ aΛ = −2lAdSGΛ

GΛ GΛ =
(
ImN−1)ΛΣ

∣∣∣∣
z∞

gΛ

Coefficients bΛ not constrained

Period matrix N N = F̄ΛΣ + 2i Im(FΛ∆)X∆Im(FΣΦ)XΦ

X∆Im(F∆Φ)XΦ

FΛΣ FΛΣ = ∂Λ∂ΣF

Gaugings G G =

(
gΛ

gΛ

)
=

(
0

gξΛ

)

Charges Q Q =

(
pΛ

qΛ

)
=

(
pΛ

0

)
Symplectic invariant L L = 〈V ,G〉 = eK/2gΛXΛ = eK/2 1

lAdS

Symplectic invariant Z Z = 〈Q,V〉
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B Analysis of BPS Conditions

B.1 BPS constraints

The one-quarter BPS solutions have to satisfy the following constraints

2U2(r)h2(r)
(

Im(e−iαU−1(r)V)
)′

= 8h2(r)Re(e−iαL)Re(e−iαV)−Q− h2(r)ΩMG
(B.1)

(U(r)h(r))
′
= 2h(r)Im(e−iαL) (B.2)

α
′
+Ar = −2U−1(r)Re(e−iαL) (B.3)

where α is the phase factor of the supersymmetry parameter and it is discussed
later in this section, while Ar is the connection on the Kähler manifold defined as

Ar ≡
i
2

(
z̄ j̄′ ∂̄ j̄K− zi′∂iK

)
(B.4)

The last constraint is the so-called Dirac quantization constraint and states

〈G,Q〉 = −κ (B.5)

Identifying the phase factor

Following the prescription in [35], the phase factor α is identified by the following
constraint
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e2iα =
Z − ih2L
Z̄ + ih2L̄

(B.6)

where h2 is the warp factor in the metric ansatz as in (2.6).
Evaluated upon the values of Z as in (A.51) and L as in (A.37), we obtain

e2iα =

i
2
√

2

(
p0z3/4 + 3p1z−1/4)− ie2(Ψ−U)eK/2gΛXΛ

− i
2
√

2
(p0z3/4 + 3p1z−1/4) + ie2(Ψ−U)eK/2gΛXΛ

= −1 (B.7)

The phase factor is then

α = −π

2
(B.8)

B.1.1 Check of (B.1)

Let’s verify (B.1). Using the definitions of U(r) as in (2.7), h(r) as in (2.8) and of V
as in (A.2), we can write the LHS as:

2r2 f Im

(
i
e−K/2√

f
eK/2

(
XΛ

FΛ

))′
(B.9)

Since XΛ are real, while FΛ are purely imaginary, we get

LHS : 2r2 f

 1√
f


X0

X1

0
0



′

with XΛ =
1

2
√

2

(
aΛ +

bΛ

r

)
(B.10)

Calculating the radial derivative we get for the LHS:

LHS : − 1
2
√

2
√

f




r f ′(a0r + b0) + 2 f b0

r f ′(a1r + b1) + 2 f b1

0
0


 (B.11)

Note that the first term on the RHS is automatically zero since from (B.33) L is real
and α = −π

2 . Using the definitions for Q as in (A.47), Ω as in (A.15),M as in (A.45)
and G as in (A.39), and remembering that we have magnetic charges only (qΛ = 0)
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and electric gaugings (gΛ = 0), the RHS can be written as

RHS : −


p0

p1

0
0

− e−Kr2


0 0 z−3/2 0
0 0 0

√
z

3
−z3/2 0 0 0

0 − 3√
z 0 0




0
0
g0

g1



=−


p0

p1

0
0

− e−Kr2


g0z−3/2
√

z
3 g1

0
0

 = −


p0 + e−Kr2g0z−3/2

p1 + e−Kr2g1

√
z

3
0
0


(B.12)

Remember that z = X1/X0.

So we should verify that the following two identities hold

− 1
2
√

2
√

f

(
r f ′a0(r + Q0) + 2a0 f Q0

)
= −p0 − e−Kr2g0

(
a1r + b1

a0r + b0

)−3/2

(B.13)

− 1
2
√

2
√

f

(
r f ′a1(r + Q1) + 2a1 f Q1

)
= −p1 − e−Kr2g1

1
3

√
a1r + b1

a0r + b0
(B.14)

We can multiply both sides by
√

f so not to have a square root at the denominator.
We will use the following rewritings for a0 and a1 with respect to the definitions
given in (2.22) and (2.23), respectively

aΛ = −
√

2lAdSGΛ (B.15)

where

GΛ =
(

ImN−1
)ΛΣ

∣∣∣∣
z∞

gΛ (B.16)

Upon evaluation we get

aΛ =

(
1√

2lAdSg0
;

3√
2lAdSg1

)
(B.17)

We report here the BPS values for the magnetic charges:

p0 = − 1
4gξ0

− 2
3

gb2
1

ξ2
1

ξ0
; p1 = −3

4
1

gξ1
+

2
3

gξ1b2
1 (B.18)

For convenience we rewrite them as
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p0 = − 1
g0

(
1
4
+

3Q2
1

l2
AdS

)
, p1 = − 3

4g1

(
1− 4Q2

1

l2
AdS

)
(B.19)

We will use the extremal values for the constants c1 and c2 as, respectively, in (2.42)
and (2.43).
We use the definition of f as in (2.14) rewritten as

f (r) = 1 +
c1

r
+

c2

r2 +
1

r2l2
AdS

(r + Q1)
3 (r− 3Q1) (B.20)

and its radial derivative is written as

f ′(r) = − c1

r2 − 2
c2

r3 +
2

l2
AdSr3

(
3Q4

1 + 4Q3
1r + r4

)
(B.21)

Check of (B.13)

We should check that

1
2
√

2
1√

2lAdSg0

(
r f ′(r− 3Q1)− 6 f Q1

)
=
√

f

(
p0 + e−Kr2gξ0

(
a1r + b1

a0r + b0

)−3/2
)

(B.22)
holds, where e−K is as in (2.20) with β = 1. Using the above expressions for p0 and
aΛ, it becomes

1
4lAdSg0

(
r f ′(r− 3Q1)− 6 f Q1

)
=

√
f

g0

(
−1

4
− 3Q2

l2
AdS

+
(r− 3Q1)

2

2l2
AdS

)
(
l2
AdS − 6Q2

1 + 2r2) (−l2
AdS + 6Q2

1 − 12Q1r + 2r2)
8l3

AdSr
=
√

f

(
−l2

AdS + 6Q2
1 − 12Q1 + 2r2

4l2
AdS

)
(B.23)

In order not to have a nasty square root we evaluate the square of the expression:

LHS :
1

64l6
AdSr2

(
l2
AdS − 6Q2

1 + 2r2)2 (−l2
AdS + 6Q2

1 − 12Q1r + 2r2)2
(B.24)

RHS :
1

64l6
AdSr2

(
l2
AdS − 6Q2

1 + 2r2)2 (−l2
AdS + 6Q2

1 − 12Q1r + 2r2)2
(B.25)

Therefore the condition (B.13) holds.

Check of (B.14)

We should check that also

− 1
2
√

2
√

f

(
r f ′a1(r + Q1) + 2a1 f Q1

)
= −p1 − e−Kr2g1

1
3

√
a1r + b1

a0r + b0
(B.26)
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holds. After inserting the values for p1, K and aΛ we get:

3
4lAdSg1

(
r f ′(r + Q1) + 2 f Q1

)
=

√
f

g1

(
−3

4
+

3Q2
1

l2
AdS

+
3(r + Q1)

2

2l2
AdS

)
(
l2
AdS − 6Q2

1 + 2r2) (−l2
AdS + 6Q2

1 + 4Q1R + 2r2)
8l3

AdSr
=
√

f
(
−l2

AdS + 6Q2
1 + 2r2 + 4Q1r

)
4l2

AdS
(B.27)

As before, we evaluate the square of the two sides, obtaining:

LHS :

(
l2
AdS − 6Q2

1 + 2r2)2 (−l2
AdS + 6Q2

1 + 4Q1R + 2r2)2

64l6
AdSr2

(B.28)

RHS :

(
l2
AdS − 6Q2

1 + 2r2)2 (−l2
AdS + 6Q2

1 + 4Q1R + 2r2)2

64l6
AdSr2

(B.29)

B.1.2 Check of (B.2)

Let’s compute the LHS and RHS of (B.2)

LHS :
(√

f r
)′

=
1√

f

(
f +

r
2

f ′
)

(B.30)

RHS : 2re−K/2L = 2re−K/2gΛLΛ (B.31)

where L is as defined in (A.37) using the following sections

LΛ = eK/2 1
2
√

2

(
aΛ +

bΛ

r

)
(B.32)

Then

L = eK/2 g
2
√

2

(
ξ0

(
a0 +

b0

r

)
+ ξ1

(
a1 +

b1

r

))
=

= eK/2 g
2
√

2r
(ξ0a0 (r + Q0) + ξ1a1 (r + Q1)) =

= eK/2 g
2
√

2r

(
1√

2lAdSg
(r− 3Q1) +

3√
2lAdSg

(r + Q1)

)
=

= eK/2 1
4rlAdS

(r− 3Q1 + 3r + 3Q1) =

= eK/2 1
lAdS

(B.33)

We have used the rewriting (B.17). Then (B.2) becomes

1√
f

(
f +

r
2

f ′
)
= 2re−K/2eK/2 1

lAdS
=⇒

(
f +

r
2

f ′
)
=
√

f
(

2r
lAdS

)
(B.34)
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In order to get rid of the square root, we evaluate the square of the equivalence(
f +

r
2

f ′
)2

= f
4r2

l2
AdS

(B.35)

where f and f ′ are as in previous section and the extremal values for the constants
c1 and c2 as, respectively, in (2.42) and (2.43), we find that the LHS and RHS are
equal and precisely

LHS = RHS =

(
l2
AdS − 6Q2

1 + 2r2)2

l4
AdS

(B.36)

This concludes the check of (B.2) for the solutions from [2].

B.1.3 Check of (B.3)

This one is immediate

• the phase factor α is constant so α′ = 0

• the Kähler quantity L is real, so that Re
(
e−iαL

)
is zero

• since the scalar field is real the connection Ar is zero as well
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C Einstein’s Equations and
Conventions

C.1 General Conventions

We are using the mostly minus signature (+−−−) and we report here the defi-
nition of covariant derivative for covariant and controvariant vectors, respectively

∇ν Aµ = ∂ν Aµ + Γµ
νλ Aλ (C.1)

∇ν Aµ = ∂ν Aµ − Γλ
νµ Aλ (C.2)

where Γ is called the Christoffel symbol and is defined as

Γλ
µν =

1
2

gλα
(
∂µgνα + ∂νgαµ − ∂αgµν

)
(C.3)

and the definiton of the Riemann tensor Rρ
σµν[

∇µ,∇ν

]
Aρ = Rρ

σµν Aσ (C.4)

Rρ
σµν = ∂µΓρ

νσ − ∂νΓρ
µσ + Γρ

µλΓλ
νσ − Γρ

νλΓλ
µσ (C.5)

C.2 Einstein’s Equations

We rewrite here the action: the bulk and boundary parts

S =
∫

d4x
√
−g
(

R
2
+ gzz∂µz∂µz + IΛΣFΛ

µνFΣµν −Vg

)
−
∫

d3x
√

hΘ (C.6)

We are going to derive the Einstein’s equations, because they are going to be useful
to express all the quantities appearing in the action using the warp factors of the

75



metric alone. We are using the metric ansatz given in (2.6)

Variation of the action with respect to gµν produces

δS =
∫

d4x
√
−g
(

1
2

(
Rαβ −

1
2

gαβR
)
− 1

2
gαβgzz∂µz∂µz− 1

2
gαβIΛΣFΛ

µνFΣµν+

+
1
2

Vg + gzz∂αz∂βz + 2IΛΣFΛ
ασFΣ σ

β

)
δgαβ

(C.7)

Thus the Einstein’s equations are

Rµν−
1
2

gµνR = −gµνVg + gµνgzz∂σz∂σz− 2gzz∂µz∂νz+ gµνIΛΣFΛ
ρσFΣρσ− 4IΛΣFΛ

µρFΣ ρ
ν

(C.8)
Given that the only non-zero component of FΛ

µν is FΛ
θφ as in (2.10) and given the

definition of the black hole potential VBH as in (A.46), we have that 1

IΛΣFΛ
µνFΣµν = −VBH

h4 (C.9)

We are following the derivation in [38] where the Riemann tensor is defined with
an overall minus sign, so that

R ≡ −gµν
(

∂ρΓρ
µν − ∂νΓρ

ρµ + Γρ
ρλΓλ

µν − Γρ
νλΓλ

µρ

)
(C.10)

For the metric (2.6) it is given by

R =
2
h2

(
1− h2U′2 −U2(h′2 + 2hh′′)− hU(4h′U′ + hU′′)

)
(C.11)

where primed quantities are intended derivatives with respect to the radial coordi-
nate.

In components the Einstein’s equations are:

• tt - component:(
−1 + 2hh′UU′ + U2(h′2 + 2hh′′)

)
h2 = −Vg + gzz∂rz∂rz− VBH

h4 (C.12)

1The explicit derivation of the property is given by

IΛΣFΛ
µνFΣµν = IΛΣFΛ

µνFΣ
ρσgµρgνσ =

= IΛΣ

(
FΛ

θφFΣ
ρσgθρgφσ + FΛ

φθ FΣ
ρσgφρgσθ

)
=

= 2IΛΣFΛ
θφFΣ

θφgθθ gφφ =

=
1
2

pΛIΛΣ pΣ sin2 θgθθ gφφ = −VBH
h4
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• rr - component

−−1 + U2h′2 + 2hh′UU′

h2 = Vg + gzz∂rz∂rz +
VBH

h4 (C.13)

• θθ - component

−hU′2 + U2h′′ + U(2h′U′ + hU′′)
h

= Vg − gzz∂rz∂rz− VBH

h4 (C.14)

• φφ - component

−hU′2 + U2h′′ + U(2h′U′ + hU′′)
h

= Vg − gzz∂rz∂rz− VBH

h4 (C.15)

Adding the tt and the rr components we obtain

gzz∂rz∂rz = −h′′

h
(C.16)

Adding the rr with the θθ component we get

Vg =
1

2h2

(
1− 1

2
(U2h2)′′

)
(C.17)

Finally, adding together the θθ and the tt components we get

VBH =
1
2

h2 (1−U2h′2 − hh′′U2 + h2U′2 + h2UU′′
)

(C.18)

We reproduced the results of [38], with the correct sign in (C.18) as already noted
in [1].
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D Extrinsic and Intrinsic curva-
ture for the boundary metric

D.1 Intrinsic Curvature for the Boundary Metric

The boundary metric is denoted with hµν and it has the following form

ds2
boundary = U2(r)dt2 − h2(r)

(
dθ2 + sin2(θ)dφ2) (D.1)

where U2(r) and h2(r) are as defined, respectively, in (2.7) and in (2.8).
The Ricci scalar, i.e. the curvature, is computed as follows

R(3) = hµν
(
−∂σΓσ

µν + ∂νΓσ
µσ − Γσ

µνΓρ
σρ + Γρ

µσΓσ
νρ

)
(D.2)

The only non zero Christoffel symbols for the hµν metric are the following

Γθ
φφ = − sin(θ) cos(θ); Γφ

θφ = Γφ
φθ =

cos(θ)
sin(θ)

(D.3)

The evaluation of (D.2) gives the following result

R(3) = htt
(
−∂σΓσ

tt + ∂tΓσ
tσ − Γσ

ttΓ
ρ
σρ + Γρ

tσΓσ
tρ

)
+

+ hθθ
(
−∂σΓσ

θθ + ∂θΓσ
θσ − Γσ

θθΓρ
σρ + Γρ

θσΓσ
θρ

)
+

+ hφφ
(
−∂σΓσ

φφ + ∂φΓσ
φσ − Γσ

φφΓρ
σρ + Γρ

φσΓσ
φρ

)
=

= hθθ
(

∂θΓφ
θφ + Γφ

θφΓφ
θφ

)
+ hφφ

(
−∂θΓθ

φφ − Γθ
φφΓφ

θφ + Γθ
φφΓφ

θφ + Γφ
φθΓθ

φφ

)
=

= hθθ

(
∂θ

(
cos θ

sin θ

)
+

cos θ

sin θ

cos θ

sin θ

)
+

+ hφφ

(
∂θ (sin θ cos θ)− cos θ

sin θ
(sin θ cos θ)

)
=

= −hθθ − hφφ sin2(θ) =

=
2

e−Kr2 = 2h−2(r)
(D.4)
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R(3) = 2h−2(r) (D.5)

D.2 Extrinsic Curvature for the Boundary Metric

D.2.1 Equivalence of different definitions

Here we give all the different definitions of the extrinsic curvature tensor that can
be found in various references and show their equivalence.
Beginning with the geometric definition (3.15) and using (3.2) we can write

Θµν = −hα
µ

(
δ

β
ν + nβnν

)
∇αnβ =

= −hα
µ∇αnν − hα

µnν nβ∇αnβ︸ ︷︷ ︸
0

=

= −hα
µ∇αnν

(D.6)

where nβ∇αnβ = 0 as a consequence of

nβ∇αnβ =
1
2
∇α

(
nβnβ

)
=

=
1
2
∇α (−1) =

= 0

(D.7)

Therefore

Θµν = −hα
µ∇αnν (D.8)

and we observe that it is a quantity defined on the hypersurface as the following
property holds

nµΘµν = 0 (D.9)

In fact
nµΘµν = −nµhα

µ∇αnν =

= −nµ
(

δα
µ + nαnµ

)
∇αnν =

= −nα∇αnν − nα nµnµ︸ ︷︷ ︸
−1

∇αnν =

= 0

(D.10)
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Moreover we can show that Θµν is a symmetric tensor using the fact that nµ is
hypersurface orthogonal.

Θµν = Θνµ (D.11)

In fact, since nµ is hypersurface orthogonal it can been written as a gradient normal
vector to the hypersurface defined as f (xµ) = const, where f is a smooth function.

nµ = N∂µ f = N∇µ f (D.12)

where N is the normalization factor. If we evaluate nµ∇νnρ we get

nµ∇νnρ = N∇µ f∇ν

(
N∇ρ f

)
=

= N
(
∇µ f

)
(∇νN)

(
∇ρ f

)
+ N2 (∇µ f

)
∇ν∇ρ f

(D.13)

We notice that if we antisymmetrize the three indices µ, ν, ρ, then the above expres-
sion vanishes since the first term is symmetric in the µ and ρ indices, while the
second term is symmetric in the ν and ρ indices thanks to the torsion free property
of the Levi-Civita connection.
Thus the hypersurface orthogonality property leads us to

n[µ∇νnρ] = 0 (D.14)

Expanding the above and contracting with nµ we directly end up with (D.11)

nµ
(
nµ∇νnρ − nµ∇ρnν + nν∇ρnµ − nν∇µnρ + nρ∇µnν − nρ∇νnµ

)
= 0

−∇νnρ +∇ρnν + nν nµ∇ρnµ︸ ︷︷ ︸
0

−nµnν∇µnρ + nµnρ∇µnν − nρ nµ∇νnµ︸ ︷︷ ︸
0

= 0

��
�∇νnρ +HHH∇ρnν − hµ

ν∇µnρ +��
�∇νnρ + hµ

ρ∇µnν +XXXX−∇ρnν = 0

(D.15)

Then
hµ

ν∇µnρ = hµ
ρ∇µnν

Θνρ = Θρν

(D.16)

Therefore we can write

Θµν = −hα
µ∇νnα =

= −hα
µ∇αnν =

= −
(

δα
µ + nαnµ

)
∇αnν =

= −∇µnν =

= −1
2
(
∇µnν +∇νnµ

)
(D.17)
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Furthermore assuming nµ to be a geodesic, i.e. nµ∇µnν = 0 we can show

Θµν = −1
2
(
∇αnβ +∇βnα

)δα
µδ

β
ν + δα

µnβnν︸ ︷︷ ︸
0

+ nµnαδ
β
ν︸ ︷︷ ︸

0

+ nαnµnβnν︸ ︷︷ ︸
0

 =

= −1
2
(
∇αnβ +∇βnα

) (
δα

µ + nαnµ

) (
δ

β
ν + nβnν

)
=

= −1
2
(
∇αnβ +∇βnα

)
hα

µhβ
ν =

= −1
2

nρ∇ρgαβ︸ ︷︷ ︸
0

+gρν∇µnρ + gµρ∇νnρ

 hα
µhβ

ν =

= −1
2

hα
µhβ

νLngαβ

(D.18)

where we have used the fact that gµν is covariantly consant, ∇αgµν = 0 and in the
first line we have added three terms that are zero when contacted with

(
∇αnβ +∇βnα

)
either because of nµ∇µnν = 0 or because of (D.7).
Finally we can show that

Θµν = −1
2
(
∇µnν +∇νnµ

)
=

= −1
2


gρν∇µnρ + gµρ∇νnρ + nνnρ∇ρnµ︸ ︷︷ ︸

0

+ nµnρ∇ρnν︸ ︷︷ ︸
0︸ ︷︷ ︸

nρ∇ρ(nµnν)


=

= −1
2

hρν∇µnρ + nρnν∇µnρ︸ ︷︷ ︸
0

+hµρ∇νnρ + nρnµ∇νnρ︸ ︷︷ ︸
0

+nρ∇ρ

(
hµν − gµν

) =

= −1
2
(
hρν∇µnρ + hµρ∇νnρ + nρ∇ρhµν

)
=

= −1
2
Lnhµν

(D.19)

D.2.2 Trace of extrinsic curvature

In the calculations we are going to use the following definition

Θµν = −1
2
(
∇µnν +∇νnµ

)
(D.20)

where nµ is an outgoing normal vector to the boundary manifold ∂M taken as

nµ =
(
0,−

√
−grr, 0, 0

)T
, nµ =

(
0,
√
−grr, 0, 0

)
(D.21)
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So that nµnµ = −1 and nµ is spacelike.
What we are interested in is the trace of (D.20), calculated as follows

Θ = Θµνgµν =

= −1
2
(
∇µnν +∇νnµ

)
gµν =

= −1
2

(
∂µnν − Γλ

µνnλ + ∂νnµ − Γλ
µνnλ

)
gµν =

= Γλ
µνnλgµν − ∂rnrgrr =

= Γr
ttnrgtt + Γr

rrnrgrr + Γr
θθnrgθθ + Γr

φφnrgφφ − ∂rnrgrr

(D.22)

The Christoffel symbols of ineterest are given by

Γr
tt =

1
2

grα (∂tgtα + ∂tgαt − ∂αgtt) =

= −1
2

grr∂rgtt = e2K f 2
(

K′

2
+

f ′

2 f

) (D.23)

Γr
rr =

1
2

grα (∂rgrα + ∂rgαr − ∂αgrr) =

=
1
2

grr∂rgrr = −
(

K′

2
+

f ′

2 f

) (D.24)

Γr
θθ =

1
2

grα (∂θ gθα + ∂θ gαθ − ∂αgθθ) =

= −1
2

grr∂rgθθ = f r2
(

K′

2
− 1

r

) (D.25)

Γr
φφ =

1
2

grα
(
∂φgφα + ∂φgαφ − ∂αgφφ

)
=

= −1
2

grr∂rgφφ = f r2 sin2 θ

(
K′

2
− 1

r

) (D.26)
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We have now all the ingredients to evaluate (D.22)

Θ = e2K f 2
(

K′

2
+

f ′

2 f

)(
1

eK/2
√

f

)(
1

eK f

)
+

+

(
K′

2
+

f ′

2 f

)(
1

eK/2
√

f

)(
−eK f

)
+

+ f r2
(

K′

2
− 1

r

)(
1

eK/2
√

f

)(
− 1

e−Kr2

)
+

+ f r2 sin2 θ

(
K′

2
− 1

r

)(
1

eK/2
√

f

)(
− 1

e−Kr2 sin2 θ

)
+
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The tt component, which is needed in the computation of the regular part of the
mass, is calculated as follows
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org/abs/gr-qc/9209012]

[42] V. Balasubramanian and P. Kraus, A Stress tensor for Anti-de Sitter gravity,
Commun.Math.Phys. 208 (1999) 413âĂŞ428 [https://arxiv.org/abs/hep-th/
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