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Abstract

The path integral formulation is a useful mathematical tool largely used in quantum field
theory. For most systems it is impossible to evaluate it analytically, so numerical methods are
needed, such as the Monte Carlo ones. In this work we will make use of Markov Chain Monte
Carlo (MCMC) algorithms for two different systems: the quantum harmonic oscillator and the
scalar λφ4 theory.

In the first part, we implement a Metropolis algorithm to simulate one dimensional
trajectories for a quantum harmonic oscillator with periodic boundary conditions. This system
has an analytic solution and thus allows us to test our program comparing the numerical
results with the theoretical ones.

In the second part, the λφ4 model on the cubic lattice in three dimensions is studied. The
local updates used in the previous section become inefficient and a global algorithm, called
Hamiltonian Monte Carlo, is implemented. It proposes new configurations by solving the
molecular dynamics equations via the leapfrog integration method, to which a final Metropolis
step is added. As a consequence the HMC algorithm becomes exact with high acceptance rate,
time-reversibility and area-preserving properties. The field configurations are used then to
calculate observables for the study of the spontaneous symmetry breaking, varying both a
parameter of the action and the lattice size.
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I INTRODUCTION TO THE PATH INTEGRAL

I. Introduction to the Path Integral

i. Evolution operator in quantum mechanics

We want to formulate the path integral for a quantum system in one dimension. The
starting point is the quantum evolution operator, which has to be evolved over a discretized
time and then the limit at continuum should be taken.

We have to consider that the evolution of a quantum system can be described using
both the Heisenberg and the Schroedinger pictures.

In the Schroedinger picture, the operators, which we generally denote with ÔS, do
not evolve in time, whereas the states, denoted with |x, t〉S, do evolve according to the
Schroedinger equation

i
∂

∂t
|x, t〉S = Ĥ|x, t〉S

where Ĥ is the Hamiltonian operator given by

Ĥ =
p̂2

2m
+ V(x̂)

Therefore

|x, t〉 = e−iĤ(t−t0)|x, t0〉, t > t0

In the Heisenberg picture, instead, the operators depend on time ÔH(t) and the states |x〉H
do not. In this case the evolution equation is for operators and it is given by

i
∂

∂t
ÔH(t) = [ÔH, Ĥ]

Therefore

ÔH(t) = eiĤtÔH(0)e−iĤt

The two formalisms are equivalent if we set

|x〉H = |x, t = 0〉S, ÔH(0) = ÔS

Then the following equality holds

S〈x, t|ÔS|x, t〉S = H〈x|ÔH(t)|x〉H

Whatever is the picture we are working in, all the dynamics is encoded within the retarded
propagator

Ĝ(t, t0) ≡ θ(t− t0)e−iĤ(t−t0) (1)
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I INTRODUCTION TO THE PATH INTEGRAL

where θ is the Heaviside step function. (1) satisfies the following differential equation{
i ∂

∂t Ĝ(t, t0) = ĤĜ(t, t0) + iδ(t− t0)1̂

Ĝ(t, t0)|t=t0 = 1̂
(2)

The Ĥ operator has the following eigenstates and eigenvalues

ĤEn = En|En〉, un(x) = 〈x|En〉 (3)

where n is the set of indexes (eventually continuous) that identifies the eigenstates.
Then, remembering that 1̂ = ∑n |En〉〈En|, we can rewrite the retarded propagator as

Ĝ(t, t0) = θ(t− t0)∑
n

e−iEn(t−t0)|En〉〈En| (4)

After performing the Fourier transform

˜̂G(z) =
∫ +∞

−∞
dt
[
eiz(t−t0)Ĝ(t, t0)

]
=
∫ +∞

0
dt
[
eiz(t−t0)e−iĤ(t−t0)

]
, for t0 ≥ 0 (5)

The integral (5) is well defined and convergent if Im(z) > 0. Then it can be written as

˜̂G(z) =
1

z− Ĥ
= i ∑

n

1
z− En

|En〉〈En| (6)

On the remaining part of the complex plane, ˜̂G(z) is the analytic continuation of (6).
If we define

Ĝ(x, t; x0, t0) ≡ 〈x|Ĝ(t, t0)|x0〉 (7)

then, using (3) and (4), we can write

Ĝ(x, t; x0, t0) = θ(t− t0)∑
n

e−iEn(t−t0)un(x)u∗n(x0) (8)

or equivalently its Fourier transform

˜̂G(t, t0; z) = i ∑
n

1
z− En

un(x)u∗n(x0) (9)

From (9) it is clear why Ĝ contains all the information about the dynamics: Ĥ has real
eigenvalues and so Ĝ has singularities along the real axys. Bounded states are poles for
Re(z) < 0 and Im(z) = 0.
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I INTRODUCTION TO THE PATH INTEGRAL

ii. Interpretation and properties of Ĝ

Ĝ(xN , T; x0, t0) has the following physical interpretation: it is the probability amplitude
that a system is measured at position xN at time tN , if it was at x0 at time t0.

The important property, which is at the basis of the Feynman path integral formulation,
is the convolution property

Ĝ(xN , T; x0, t0) =
∫

dx1
[
Ĝ(xN , T; x1, t1)Ĝ(x1, t1; x0, t0)

]
It states that the probability amplitude is the sum of all possible products of probability
amplitudes, where, for possible, one intends over all the possible positions x1. If we iterate
this procedure N times, then we are summing over all the possible paths (see figure (1)).

Ĝ(xN , T; x0, t0) =
∫

dx1 . . . dxN
[
Ĝ(xN , T; x1, t1) . . . Ĝ(xi−1, ti−1; xi, ti) . . . Ĝ(xN−1, tN−1; x0, t0)

]
The time is made discrete on a lattice with lattice spacing a = T/N, where T = (t− t0).
Then we can write the evolution as the product of evolutions over each time slice. As a
consequence the retarded propagator can be written as 1

Ĝ(t, t0) = e−iaNĤ = e
−iaN

(
p̂2
2m+V(x̂)

)

'
[

e−ia p̂2
2m e−iaV(x̂)

]N

=

= e−
iaV(x̂)

2

[
e−

iaV(x̂)
2 e−ia p̂2

2m e−
iaV(x̂)

2

]N

e−
iaV(x̂)

2

(10)

1Here we make use of the Trotter formula, which states that given two reasonable operators A and B
(where reasonable means that their commutator [A, B] does not explode), the following limit holds

e(A+B) = lim
N→+∞

(
e

A
N e

B
N

)N

Proof. From exponential expansion we can write

e
A+B

N = e
A
N e

B
N + o

(
1

N2

)
Now we evaluate the difference(

e
A
N e

B
N

)N
−
(

e
A+B

N

)N
= −

(
e

A+B
N

) (
e

A+B
N

)N−1
+ e

A
N e

B
N e

A+B
N (N−1) − e

A
N e

B
N e

A+B
N (N−1) + ...−

(
e

A
N e

B
N

)N−1
e

A+B
N +

(
e

A
N e

B
N

)N
=

=
[
−e

A+B
N + e

A
N e

B
N

]
e

A+B
N (N−1) + e

A
N e

B
N

[
−e

A+B
N + e

A
N e

B
N

]
e

A+B
N (N−2) + ... + e

A
N e

B
N

[
−e

A+B
N + e

A
N e

B
N

]
=

= 0 + o
(

1
N2

)
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I INTRODUCTION TO THE PATH INTEGRAL

x0

xN

x1 . . . xi xi+1 . . .

Figure 1: Illustration of two possible paths between two fixed endpoints, x0 and xN

ii.1 Transfer operator

We define the transfer operator T̂a, the one that evolves the system over a time interval
δt = a, as

T̂a = e−
iaV(x̂)

2 e−ia p̂2
2m e−

iaV(x̂)
2 (11)

Therefore

Ĝ(t, t0) = e
iaV(x̂)

2
[
T̂a
]N

e−
iaV(x̂)

2 (12)

Since the transfer operator is, by definition, a unitary operator

T̂aT̂ †
a = T̂ †

a T̂a = 1

we can define an operator Ĥ such that

T̂a = e−iaĤ, Ĥ = Ĥ
†

(13)

In the continuum limit a → 0, we have that Ĥ → Ĥ. If we name with |εn〉 the transfer
operator eigenstates, then

T̂a|εn〉 = e−iaεn |εn〉 (14)

then the following relation holds

εn = En + o(a2) (15)

where the difference between the retarded propagator eigenvalues and the transfer
operator ones lies in discretization errors only.
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I INTRODUCTION TO THE PATH INTEGRAL

ii.2 Analytic continuation to the Euclidean propagator

We now perform the Wick rotation to pass from the Minkowski retarded propagator to
the Euclidean one, so that the integrals involved are well defined and convergent.

ĜE(t, t0) = Ĝ(−it,−it0), where tE = it (16)

tE is the Euclidean time, it is a real variable and it corresponds to the imaginary part of
t analytically continued. The Euclidean propagator contains all the information on the
dynamics of the system as well.

The time interval is as before [0, T], with tE = an, n = 0, 1, ..., N. Therefore under
a→ −iaE, the Euclidean transfer operator becomes

T̂aE = e−
aE
2 V(x̂)e−

p̂2
2m aE e−

aE
2 V(x̂) (17)

The preceding relations (13), (14) and (15) are modified as follows2

T̂a = e−aĤ = e−aĤ + o(a2) (18)

T̂a|εn〉 = e−aεn |εn〉 (19)

εn = En + o(a2) (20)

Since
T̂N

a = T̂a

∫
dx1|x1〉〈x1|T̂a

∫
dx2|x2〉〈x2|T̂a...

for each time interval a we are going to evaluate

〈xi|T̂a|xi+1〉 = 〈xi|e−
a
2 V(x̂)e−

p̂2
2m ae−

a
2 V(x̂)|xi+1〉

By definition we have that
e−

a
2 V(x̂)|xi〉 = e−

a
2 V(xi)|xi〉 (21)

On the other hand the kinetic term can be written as

〈xi|e−
p̂2
2m a|xi+1〉 =

∫
dp〈xi|p〉〈p|e−

p̂2
2m a|xi+1〉

=
∫

dp〈xi|p〉e−
p2
2m a〈p|xi+1〉

=
1

2π

∫
dpeipxi e−

p2
2m ae−ipxi+1

=
( m

2πa

)1/2
e−

(xi−xi+1)
2m

2a

(22)

2From now on the subscript E could be dropped, it will be clear from the context whether we are working
in the Euclidean or in the Minkowski time
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I INTRODUCTION TO THE PATH INTEGRAL

where we have used the normalization property 〈x|p〉 = 1√
2π

eipx and performed a

gaussian integration 3. Putting together the two pieces in (21) and (22), we obtain that

〈xi|T̂a|xi+1〉 =
( m

2πa

)1/2
e
−a
[

m
2

( xi−xi+1
a

)2
+ 1

2 V(xi)+
1
2 V(xi+1)

]
(23)

We now can turn back to our Euclidean propagator and write it as a path integral in the
following way

〈xN |Ĝ(T)|x0〉 ' e
aV(xN )

2 〈xN |T̂a

∫
dxN−1|xN−1〉〈xN−1|T̂a

∫
dxN−2...T̂a|x0〉e−

aV(x0)
2

=
∫ N−1

∏
i=1

dxie
a
2 V(xN)

[
N−1

∏
j=0
〈xj+1|T̂a|xj〉

]
e−

a
2 V(x0)

=
( m

2πa

)N/2 ∫ N−1

∏
i=0

dxi

N−1

∏
j=0

e
−a
[

m
2

( xj+1−xj
a

)2
+V(xj)

]

If we define the Euclidean Lagrangian density as

LE(xi+1, xi) ≡
m
2

(
xi+1 − xi

a

)2

+ V(xi) (24)

and call Euclidean action

SE = a
N−1

∑
i=0
LE(xi+1, xi) (25)

then

GE(xN , T, x0, 0) =
( m

2πa

)N/2 ∫ N−1

∏
i=1

dxie−SE , with fixed x0, xN (26)

This is the retarded propagator expressed as a path integral of a quantistic system in the
Euclidean.

ii.3 Back to Minkowski

To come back to Minkowski we perform

aE → ia

and obtain

L = −LE(xi+1, xi)|aE→ia =
m
2

(
xi+1 − xi

a

)2

−V(xi)

3The formula for a Gaussian integral is given by

1√
2πσ2

∫ +∞

−∞
dqe−

q2

2σ2 eiqx = e−
x2σ2

2
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I INTRODUCTION TO THE PATH INTEGRAL

S = a
N−1

∑
i=0
L(xi+1, xi)

G(xN , T; x0, 0) =
( m

2πia

)N/2 ∫ N−1

∏
i=1

dxieiS

Thus written, this integral makes sense only as a concise way to indicate the procedure
above illustrated; in other words as an analytic continuation of the retarded propagator in
the Euclidean. In fact, we have to consider a 6= 0, analytically continue G using the path
integral formalism, then come back to Minkowski and take the limit a→ 0.

ii.4 Physical meaning of the path integral formalism

The path integral formalism is a powerful tool that takes into account quantum effects. In
classical mechanics a particle moves along a trajectory x(t), given extremizing its action.
The equations of motion are the Lagrange equations

d
dt

(
∂L
∂ẋ

)
− ∂L

∂x
= 0

and this implies that, in classical mechanics, the motion of the particle is determined only
by the form of the action S around its extremum.

In quantum mechanics, instead, all the possible trajectories contribute with a probabil-
ity amplitude given by ∫

∏
i

dxiei Sh̄

and, as a consequence, not only the form of S is relevant but also its value, since it defines
the weight of the trajectories.

In particular, for a classical system |S| >> h̄, and, in general, trajectories have different
phases and cancel each other: trajectories far from the minimum of the action do not
contribute, only those with δS ∼ h̄ contribute, where with δS we intend the difference in
action between a generic trajectory and the stationary one.

For a quantum system, instead, δS ∼ h̄ for all the trajectories and so all the paths
contribute.

iii. Connection with statistical mechanics: partition function and nu-
merical methods

Here we illustrate the advantages of the path integral formalism along with numerical
tools.

We can define the partition function as

Za =
( m

2πa

)N/2 ∫ N−1

∏
i=0

dxie−SE

9



I INTRODUCTION TO THE PATH INTEGRAL

and we can see that it is analogous to the partition function in statistical mechanics, with
the Boltzmann factor replacing e−SE .

When periodic boundary conditions are imposed, then Za can be easily written in
operatorial form as follows

Za =
( m

2πa

)N/2 ∫ N−1

∏
i=0

dxie−SE = Tr
[
ĜE(T, t0)

]
= Tr

[
T̂N

a

]
(27)

Quite always the normalization factor
( m

2πa

)N/2 is negligible.
It follows that

Za = ∑
n

e−aNεn

and therefore, from Za, it is possible to extract the energy eigenvalues.
In general, in quantum mechanics, we are interested in calculating matrix elements of

operators, for example those between eigenstates of the hamiltonian Ĥ. It is possible to
extract the matrix elements using the path integral formalism. We start from the definition
of the two-point correlation function

C(tk, tj) =

∫
∏N−1

i=0 dxi
[
e−SÔ1(xk)Ô2(xj)

]∫
∏N−1

i=0 dxi [e−S ]
=

∫
∏N−1

i=0 dxi
[
e−SÔ1(xk)Ô2(xj)

]
Za

(28)

Monte Carlo methods enter here as we extract trajectories with probability distribution
given by e−S .

We can show that under suitable limits4, (28) is equal to the T-product of operators

lim
T→+∞

C(tk, tj) = 〈ε0|T̂(Ô1Ô2)|ε0〉

and
lim
a→0
〈ε0|T̂(Ô1Ô2)|ε0〉 = 〈E0|T̂(Ô1Ô2)|E0〉

4 Here we give a concise demonstration of the double limit

Proof. Given

Za(T) = Tr
[

T̂N
a

]
= ∑

n
e−aNεn = ∑

n
e−Tεn , aN = T

then using the identity Î = ∑n |εn〉〈εn|

C(tk, tj) ·Za(T) = θ(tj− tk)∑
n

e−εn(T−|tk−tj |)〈εn|Ô2T̂|tk−tj |Ô1|εn〉+ θ(tk− tj)∑
n

e−εn(T−|tk−tj |)〈εn|Ô1T̂|tk−tj |Ô2|εn〉

In the limit limT→+∞ only the vacuum contribution ε0 survives. Therefore

lim
a→0

lim
T→+∞
(a=const)

C(tk, tj) = θ(tj − tk)〈E0|Ô2(tj)Ô1(tk)|E0〉+ θ(tk − tj)〈E0|Ô1(tk)Ô2(tj)|E0〉

= 〈E0|T̂(Ô1(tk)Ô2(tj))|E0〉

10



I INTRODUCTION TO THE PATH INTEGRAL

It is this double limit that shows how the path integral can be useful.

Along with the correlation functions path integrals are used to calculate expectations
values of observables

〈Ô〉 = 1
Z

∫
[Dx]e−SÔ(x) (29)

where we indicate with [Dx] the integration over all the trajectories. As before, Monte
Carlo methods are used to extract paths with probability 1

Z e−S .
In both (28) and (29), the Central Limit Theorem assures that the best estimate of an

integral

I =
∫

dx[ f (x)P(x)]

is given by

I =
1

Nconf

Nconf−1

∑
i=0

f (xi)

where xi are the paths generated with Monte Carlo methods according to the distribution
probability P(x) (in our case it is 1

Z e−S ) and Nconf is the number of the extracted trajectories.
This automatically generalizes to d dimensions.

iv. Outline of the project

In this work two quantum systems are taken into consideration: the harmonic oscillator
and a scalar field theory. Both require Monte Carlo methods to numerically evaluate the
integrals involved in the theory. We implement Markov Chain Monte Carlo methods to
generate large samples of system configurations, distributed according to 1

Z e−S .
In the next section (II) MCMC methods are analyzed in detail. Then the Metropolis

algorithm is implemented in the case of the harmonic oscillator in section (III), whereas
the Hamiltonian Monte Carlo (HMC) is implemented to simulate the scalar theory in
section (IV).

In the appendix, the statistical error analysis using jackknife method is discussed and
a scheme5 for both programs is provided.

5The project is divided into two parts: LFC18 implements the harmonic oscillator, whereas phi4 imple-
ments the λφ4 theory.
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II NUMERICAL METHODS: MCMC

II. Numerical Methods: MCMC

i. Markov Chain Monte Carlo (MCMC)

To analyze the two quantum systems, the harmonic oscillator and the scalar field, we have
to implement numerical methods in order to evaluate the correlation functions and the
expectation values of observables. Such methods are part of the Monte Carlo methods.

The term Monte Carlo is used for calculational techniques which make use of random
numbers to construct samples distributed according to some fixed probability density. In
our work we implement a Markov Chain Monte Carlo (MCMC) algorithm.

The idea behind MCMC methods is to generate samples from a target distribution
π by the means of a Markov chain whose stationary probability density is indeed π. A
Markov chain is a sequence of random variables (x0, x1, x2, . . . , xn) such that xi depends
only on xi−1.

Formally a sequence of events is a Markov chain if

P(xj0 , ..., xjn) = aj0 Pj0 j1 ...Pjn−1 jn

where aj0 is an arbitrary first element of the chain, with

aj0 ≥ 0, ∑
j0

aj0 = 1

and
Pj0 j1 ≥ 0, ∑

ji

Pj0 ji = 1

To each Markov chain is associated a transition matrix, given by

P =


P11 P12 P13 ...
P21 P22 P23 ...
P31 P32 P33 ...
... .... ... ...


This type of matrices satisfy

Pij ≥ 0, ∀i, j, ∑
j

Pij = 1

and are called stochastic matrices.

ii. Ergodic theorem and asymptotic distribution

An interesting point is to study under what conditions a Markov chain converges to a
stationary distribution, so to assure that the trajectories follow the desired probability
density, after the procedure is repeated a large number of times. Here comes the ergodic
theorem.

12



II NUMERICAL METHODS: MCMC

If we perform n steps, with limn→+∞, then the ergodic theorem6 assures that, if we
are dealing with an ergodic Markov chain, then

lim
n→+∞

[P](n)ij = πj

A Markov chain is said to be ergodic when each state xj in the configuration space is
persistent (the probability to extract it again after the first extraction is 1), not null (its
mean recurrence time is µj < +∞) and aperiodic.

If the Markov chain is ergodic, it will converge to its stationary distribution indepen-
dently of its initial conditions, thanks to the ergodic theorem.

A sufficient but not necessary condition to guarantee ergodicity is to demand that the
detailed balance condition

πiPij = πjPji (30)

is satisfied. This condition requires that the probabilities of moving from state xi to xj
and from xj to xi are the same.

In our case the desired asymptotic distribution is π = 1
Z e−S . The only problem is

to find a stochastic matrix P that satisfies (30). In the following section we will analyze
two methods to generate ergodic Markov chains: the Metropolis algorithm and the
Hamiltonian Monte Carlo one.

6The ergodic theorem states that

Theorem 1 (Ergodic theorem). xi are ergodic states and there exists the limit

lim
n→+∞

[Pjk]
(n) = πk

if and only if
∑
k

πk = 1, πk = ∑
i

πiPik

13



III METROPOLIS MONTE CARLO: HARMONIC OSCILLATOR

III. Metropolis Monte Carlo: harmonic oscillator

i. Harmonic oscillator in 1-D

The harmonic oscillator is one of the few systems that can be solved analytically and here
will serve us as a test case for Monte Carlo methods. We perform our simulation in the
Euclidean time. The hamiltonian of the system is given by

Ĥ =
p̂2

2m
+

1
2

mω2 x̂2 (31)

and the discretized action is

S(xi) = a
N−1

∑
i=0

{
m
2

(
xi+1 − xi

a

)2

+
1
2

mω2x2
i

}
(32)

The partition function is given by

Z =
∫ N−1

∏
i=0

dxie−S(xi) (33)

Periodic boundary conditions have been used: x(0) = x(Na), where we use x to label
the position, a to denote the time lattice spacing (δt = a) and N represents the number of
points on our time lattice. In our simulation m = ω = 1. Where not otherwise specified,
a = 1 and N = 64. All these parameters are defined in the global.h file.

The main objective of this simulation is to calculate the two-point correlation function
for the position operator, which according to (28) is

C(t) = 〈x̂i x̂i+t〉 =
1
Z

∫ N−1

∏
i=0

dxie−S x̂i x̂i+t (34)

where t is the physical time over which the system evolves.
We can rewrite (34) using operator tools and obtain

〈x̂i x̂i+t〉 =
1

Tr[T̂N ]
Tr
[

T̂N−t x̂T̂t
a x̂
]

(35)

where T̂ is the evolution operator defined in (17).
From (35) we can extract both the energy difference between the fundamental and the

first excited state, ∆ε = ε1 − ε0, and the matrix element |〈ε0|x̂|ε1〉|2, where with |εi〉 we
denote the transfer operator eigenstates as in (19).

We analyze separately the numerator and the denominator of (35)

Tr[T̂N ] = ∑j e−aNεj N→∞−−−→ e−aNε0

14
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since for large N all the contributions are suppressed except for the vacuum one. For the
denominator we use the identity 1 = ∑j |εj〉〈εj|

Tr[T̂N−t x̂T̂t x̂] = ∑
i,j

e−a(N−t)εi e−atεj〈εi|x̂|εj〉〈εj|x̂|εi〉

taking the limit for N → +∞ only the vacuum and the first excited states survive

N→∞−−−→ ∑j e−a(N−t)ε0 e−atεj〈ε0|x̂|εj〉〈εj|x̂|ε0〉+ e−a(N−t)ε1 e−atε0〈ε1|x̂|ε0〉〈ε0|x̂|ε1〉 (36)

Putting together the two pieces, we obtain

C(t) N→∞−−−→
{
|〈ε0|x̂|ε1〉|2 e−

N
2 a(ε1−ε0) · 2 cosh[(N

2 − t)a(ε1 − ε0)]

}
· 1

e−aNε0
(37)

We call R
R = 2 |〈ε0|x̂|ε1〉|2 e−

N
2 a(ε1−ε0)

we have that
C(t) t�1−−−→

N→∞
R cosh

(
(N

2 − t)a∆ε
)

The value of ∆ε can be extracted from the correlator as follows7

∆ε(t) =
1
a

cosh−1
[

C(t + 1) + C(t− 1)
2C(t)

]
(38)

Then the matrix element can be calculated

|〈ε0|x̂|ε1〉| (t) =

√√√√ C(t)e
N
2 a∆ε

2 cosh
[(N

2 − t
)

a∆ε(t)
] (39)

In this first part we want to calculate (38) and (39) so that we can confront the results with
the theoretical expected values. Our primary variable is the correlator (34) and we have to
implement a MCMC method to generate paths according to the distribution given by the
path integral 1

Z e−S , which plays the role of the desired asymptotic distribution. In order
for the trajectories to converge to this probability, we guarantee that the detailed balance
is satisfied using a Metropolis algorithm.

7It is sufficient to write explicitly the three terms using (36)

C(t) = const
[
e−aNε0 e−at(ε1−ε0) + e−aNε1 e−at(ε0−ε1)

]
C(t + 1) = const

[
e−aNε0 e−at(ε1−ε0)e−a(ε1−ε0) + e−aNε1 e−at(ε0−ε1)e−a(ε0−ε1)

]
C(t− 1) = const

[
e−aNε0 e−at(ε1−ε0)ea(ε1−ε0) + e−aNε1 e−at(ε0−ε1)ea(ε0−ε1)

]
Then it simply follows that

C(t + 1) + C(t− 1) = 2 cosh(a∆ε(t))C(t)

15
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ii. Metropolis algorithm

The most important attribute of this algorithm is the use of importance sampling, in other
words random points are generated with higher probability in the region of interest.

Given the action of the system S , as in (32), each Markov chain is a sequence of
position values (x0, x1, ..., xi, ..., xN−1), where N is defined as before. The following scheme
explains the mechanism:

1. Generate any random initial path (x0, x1, ..., xi, ..., xN−1)

2. Choose the random point x′i with uniform probability within the interval

xi − ∆ < x′i < xi + ∆

where ∆ = 1

3. Replace xi with the new value x′i and calculate the difference in action

∆S(x′i , xi) ≡ S(x′i)− S(xi)

4. If ∆S(x′i , xi) < 0, i.e. the action is lowered by replacing the value at i with x′i , then
the replacement occurs

5. If ∆S(x′i , xi) ≥ 0, then generate a random number r ∈ [0, 1]

• if e−∆S(x′i ,xi) > r, then accept the new point x′i , change the initial path and pass
to the next point
• otherwise reject x′i (keep xi) and pass to the next point

With this choice of the transition probability, the detailed balance condition is satisfied
and so we assure that, after many iterations (we generate Nconf = 106 paths), the paths
are generated following the required distribution.

ii.1 Thermalization: reaching equilibrium

We start our simulation with a random path xi+1 = (−1)xi, x0 = −1. We can see by
looking at the value of the action (see figure (2)) that, at the beginning, the new paths are
not in equilibrium. After few iterations the value of the action settles down and there
are just statistical fluctuations. We say that we are in thermal equilibrium. By taking
measurements over many such paths, values of observables may then be calculated. The
primary observable involved in our calculations is the correlator as defined in (34).

ii.2 Correlation function

Once the paths are generated according to the equilibrium distribution, the correlation
function can be calculating using the results of the Central Limit Theorem

Cξ(t) =
1
N

N−1

∑
i=0

xξ
i xξ

i+t (40)

16
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Figure 2: The action values are plotted as functions of the matkovian time. We can see how after few
iterations it thermalizes.

where ξ is the configuration index. If we want to take the mean over the Nconf values, we
have to pay attention to the fact that, by definition of the Markov chain, two successive
paths are correlated.

ii.3 Autocorrelation function: how to uncorrelate data

Since the values evaluated using (40) are correlated, the statistic uncertainty of the value
of the correlator, at a fixed physical time, averaged over Nconf, C(t), would be complicated
to calculate.

Starting from
σ2

C = 〈C2〉 − 〈C〉2

we can expand

〈C2〉 = 1
Nconf

∑
ξi ,ξ j

〈Cξi Cξ j〉

=
1

Nconf
∑
ξi

〈C2
ξi
〉+ 2

Nconf
∑

ξi 6=ξ j

〈Cξi Cξ j〉

Then
σ2

C =
1

Nconf
∑
ξi

[
〈C2

ξi
〉 − 〈Cξi〉

2
]
+

2
Nconf

∑
ξi 6=ξ j

[
〈Cξi Cξ j〉 − 〈C〉

2
]

If the data were not correlated we would simply have

〈Cξi Cξ j〉 = 〈Cξi〉〈Cξ j〉 = 〈C〉
2 =⇒ σ2

C =
1

Nconf

[
〈C2〉 − 〈C〉2

]
17
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But if they are correlated

σ2
C =

1
Nconf

[
〈C2〉 − 〈C〉2

] 1 + 2 ∑
ξi 6=ξ j

〈Cξi Cξ j〉 − 〈C〉2

〈C2〉 − 〈C〉2

 =

=
1

Nconf

[
〈C2〉 − 〈C〉2

] 1 + 2
Nconf

∑
ξi=1

Nconf−1

∑
ξ j=1

〈Cξi Cξi+ξ j〉 − 〈C〉2

〈C2〉 − 〈C〉2


Considering an infinite number of configurations, we can write

σ2
C =

1
Nconf

[
〈C2〉 − 〈C〉2

] 1 + 2
Nconf

∑
ξi=1

Nconf

∑
ξ j=1

〈Cξi Cξi+ξ j〉 − 〈C〉2

〈C2〉 − 〈C〉2


Then we define the autocorrelation function as

Γ(t) =
〈Cξi Cξi+ξ j〉 − 〈C〉2

〈C2〉 − 〈C〉2 (41)

The autocorrelation function can be used to obtain a sample of uncorrelated data.
The plot in figure (3) shows the autocorrelation function of our correlator data. It

allows to estimate how many iteration are required in order for them to be uncorrelated.

Figure 3: The autocorrelation function Γ is fitted with an exponential of the type ae(−t/τ), where τ ∼ 3.8
is linked to the correlation time (the time we are refering to is the Markovian time)

The autocorrelation function decays exponentially following

Γ(t) ∼ e−t/τ

18
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where τ is the autocorrelation time. The fitting function that overlaps the data has τ ∼ 3.8.
This value is needed to determine the dimension of the bin. In fact, two paths stay
correlated as long as there are enough iterations in between them. Taking the average of
the correlator every 10τ (or more) configurations, the new data, now uncorrelated, can be
used for calculating the observables. This procedure, called binning, produces Nconf/Dbin
number of independent measures, where Dbin is the dimension of the bin (in our case we
took Dbin = 50). Thus the standard deviation estimate can easily be done as explained in
the appendix (IV).

Returning to the correlation function, we can see in figure (4) a logarithmic plot of
correlator, averaged on the Nconf sample, for different values of Nconf. We see how its
values oscillate around the zero point.

Figure 4: Correlation function plotted in logarithmic scale for different values of Nconf

An interesting feature can be noticed if we plot the correlator for a fixed Nconf with its
error line, as we can see in the plots of figure (5). In fact, in each case, the error value is of
the same order of the correlator value. This means that the ratio

σC

C(t)
∼ 1√

Nconf
→ 1

The oscillations of the correlator are of the same size of the error and the results are no
longer reliable.
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(a) Nconf = 104 (b) Nconf = 105

(c) Nconf = 106 (d) Nconf = 107

Figure 5: Correlation function averaged over different Nconf samples, plotted together with the error line

iii. ∆ε and matrix element: results vs theoretical predictions

We have seen that given the correlator data, averaged over the configuration sample, we
can calculate ∆ε(t) and |〈ε0|x̂|ε1〉| (t), as in (38) and (39). In our calculations we have
chosen t = 3 and we have varied8 the time lattice spacing a, with fixed Nconf = 106,
(Dbin = 50). We can see the results plotted in figures (6) and (7).

Remember from (15) that the eigenvalues of the transfer operator coincide with those
of the retarded propagator only in the continuum limit. We can associate to the transfer
operator eigenstates and eigenvalues (14) two auxiliary hamiltonians, given by

Ĥ =
p̂2

2m
+

1
2

mω2 x̂2

which we already defined in (13) and

ˆ̃H =
p̂2

2m
+

1
2

mω̃2 x̂2

8The a values were taken so that the product aN was constant and equal to 64. Therefore N values have
been changed in accordance
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These are related to the original hamiltonian (31) by

εn = ω̃

(
n +

1
2

)
(42)

aω̃ = log
(

1 + aω +
a2ω2

2

)
(43)

ω2 = ω2
(

1 +
a2ω2

4

)
(44)

Then it is easily derived that

∆ε = ε1 − ε0 = ω̃(ω) (45)

and
|〈ε0|x̂|ε1〉| =

1√
2ω

, m = 1 (46)

From (42), (43) and (44) we can derive9the dependence of ∆ε and |〈ε0|x̂|ε1〉| on a2

∆ε = ω− 1
24

a2ω3; |〈ε0|x̂|ε1〉| =
1√
2ω

(
1− a2

16
ω2
)

, with ω = 1

The calculated intercept is in accordance with the theoretical predictions.

∆ε = (1.000± 0.001); |〈ε0|x̂|ε1〉| = (0.7073± 0.0002)

For the ∆ε value, in the continuum limit10, the obtained value is in agreement with the
prediction within 0.07σ. For the |〈ε0|x̂|ε1〉| value the agreement is within 1.5σ.

9The dependence on a2 is derived Taylor expanding (45) and (46).

∆ε =
1
a

log

[
1 + aω

√
1 +

a2ω2

4
+

a2ω2

2

]
∼ 1

a
log
[

1 + aω

(
1 +

1
8

a2ω2
)
+

a2ω2

2

]

∼ 1
a

(
aω +

1
8

a3ω3 +
1
2

a2ω2 − 1
2

(
aω +

1
8

a3ω3 +
1
2

a2ω2
)2

+
1
3

(
aω +

1
8

a3ω3 +
1
2

a2ω2
)3

+ ...

)

=
1
a

(
aω− 1

24
a3ω3 + ...

)
∼ ω− 1

24
a2ω2 ∼ 1− (0.0417)a2

|〈ε0|x̂|ε1〉| =
1√

2
√

ω2
(

1 + a2ω2

4

) ∼ 1√
2ω

1√
1 + a2ω2

8

∼ 1√
2ω

(
1− a2ω3

16

)
∼ 0.707− (0.0442)a2

10When we send a→ 0 we into account a significant increase in computation time.
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Figure 6: ∆ε, for t = 3, plotted against lattice spacing a2. We notice the as a becomes smaller the values
approach the theoretical prediction.

Figure 7: |〈ε0|x̂|ε1〉|, for t = 3, plotted against lattice spacing a2. We notice the as a becomes smaller the
values approach the theoretical prediction.
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IV. Hamiltonian Monte Carlo (HMC): λφ4
theory

i. Scalar λφ4
theory on lattice in 3-D

In the second part of the project we implement a scalar lattice field theory λφ4. The
continuous version of the Lagrangian of the system, in the Euclidean time formalism, is
given by

L =
1
2

∂µφ∂µφ +
1
2

m2φ2 +
λ

4!
φ4 (47)

so that the action is
S =

∫
d4xL(φ, ∂µφ)

The discretized version of the action is

S(φ) = ∑
x∈Λ

[
−2k

{
D−1

∑
η=0

φ(x)φ(x + η)

}
+ φ2(x) + λ(φ2(x)− 1)2

]
(48)

where x denote the lattice sites, referred to as Λ. We define the model on a D dimensional
lattice with lattice spacing a (from now on a is set to 1). The real valued field φ lives on
the sites and we adopt periodic boundary conditions, i.e. if µ is the unit vector in the µ

direction, then
φ(x + Lµ) = φ(x)

The constant values that appear in (48) are set as λ = 1.3282 and k = 0.18169, if not
otherwise indicated.

All the parameters of the lattice, the dimension D (which is fixed to 3), the spatial
extent L and the volume V, are defined in lattice.h.

ii. Hamiltonian Monte Carlo (HMC)

As in the case of the harmonic oscillator, the calculation of the observables is linked to the
path integral formalism. In fact, the expectation value of an operator 〈Ô〉 is given by

〈Ô〉 = 1
Z

∫
[Dφ] Ô(φ)e−S (49)

in analogy with (29), where the trajectories [Dx] have become field configurations [Dφ], Z
is the system partition function

Z ≡
∫

[Dφ] e−S

and S is given in (47).
If there were an algorithm that extracted field configurations according to probability

distribution PS(φ) =
1
Z e−S , then we would be able to calculate observables averaged over

the generated sample as

O ≡ 1
Nnconf

Nnconf

∑
i=1

O(φi)
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In the previous part we implemented the Metropolis algorithm, but, in the case of λφ4

theory, it becomes inefficient since local updates, as those used for the harmonic oscillator,
explore the configuration space slowly, i.e. there are long autocorrelations. Moreover,
since the action is extensive, even if we simultaneously updated the field, the difference
between the initial and the final action, ∆S , would be considerable and the acceptance
rate would be low.

In order to bypass these problems, we use a different algorithm, which involves
parallel updates of the field at all lattice sites, followed by an accept/reject step that
decides for the whole configuration. The algorithm is known as Hamiltonian Monte Carlo
(HMC). It introduces a new parameter τ, called simulation time, and makes use of the
hamiltonian dynamics equations to evolve the field φ over τ.

To implement the HMC algorithm, we introduce an auxiliary field π, so that the new
Hamiltonian becomes

H(φ, π) =
1
2 ∑

x∈Λ
π2(x) + S(φ) (50)

The partition function Z now depends on π

ZH =
∫

[Dφ] [Dπ] e−H(φ,π) (51)

and the two fields, φ and π, both acquire dependence on τ

π(x)→ π(x, τ), φ(x)→ φ(x, τ)

We can interpret π(x, τ) as the conjugate momenta of φ(x, τ) as obtained from (50).
The two fields, π(x, τ) and φ(x, τ), satisfy the Hamilton equations, called Molecular

Dynamics equations, (MD equations)

dφ(x, τ)

dτ
=

∂H(φ, π)

∂π(x, τ)
= π(x, τ)

dπ(x, τ)

dτ
= −∂H(φ, pi)

∂φ(x, τ)
= − δS(φ)

δφ(x, τ)
≡ −F(x, τ)

(52)

The introduction of the auxiliary π field makes possible to generate field configurations
based on (52). These are equations of motions for the artificial hamiltonian and from their
solution we can construct a valid update algorithm, since they conserve the hamiltonian
and the phase space volume (Liouville’s theorem). In other words a configuration of
(φ, π) is equally likely to the (φ′, π′), which is obtainable using (φ, π) as initial condition
and solving the equations of motions for some time τ.

The HMC algorithm would be ideal if we were able to solve the equations of motion
exactly. In general, we solve them using some numerical method, as the leapfrog integrator
in our case, and integration errors occur.

However it becomes exact if we add a Metropolis step at the end of each trajectory.
We call it the accept/reject step. This procedure works if two requirements are satisfied:
time-reversibility and conservation of the phase space volume.

Here we outline the scheme of the HMC algorithm:
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1. Start with a random configuration of the φ field φ0(x, τ).

2. Sample a random initial momenta configuration π0(x, τ), according to a gaussian
distribution of zero mean and unit variance.

PG(π) =
e

1
2 ∑x∈Λ π2(x)∫

[dπ] e
1
2 ∑x∈Λ π2(x)

=
e

1
2 ∑x∈Λ π2(x)

Zπ

3. Numerically solve the hamiltonian equations of motions (52) for some τ0 (in our
case τ0 = 1). This moves (φ, π) to a new proposed configuration (φ′, π′). Note that
the proposal is deterministic, since the probability to go to (φ′, π′) is different from
zero only if the new field is a solution of the MD equations.

PMD
(
(φ, π)→ (φ′, π′)

)
= δ(φ′ − φ)δ(π′ − π)

4. Calculate the change in the hamiltonian

∆H = H(φ′, π′)− H(φ, π)

5. Accept the proposed configuration φ′ with probability

PA
(
(φ, π)→ (φ′, π′)

)
= min{1, e−∆H}

6. Otherwise φ′ = φ

The algorithm updates the φ field with probabiity

PM(φ→ φ′) =
∫

[Dπ]
[
Dπ′

]
PG(π)PMD

(
(φ, π)→ (φ′, π′)

)
PA
(
(φ, π)→ (φ′, π′)

)
We can show that this assures that the detailed balanced condition11

PM(φ→ φ′)PS(φ) = PM(φ′ → φ)PS(φ
′)

11 To prove that the detailed balance condition is guaranteed, we need the following results:

1. PS(φ)PG(π) = 1
ZH

e−H(φ,π)

2. PMD ((φ, π)→ (φ′, π′)) = PMD ((φ′,−π′)→ (φ,−π)), since the leapfrog integrator is area preserv-
ing.

3. PS(φ)PG(π)PA ((φ, π)→ (φ′, π′)) = PS(φ
′)PG(π

′)PA ((φ′, π′)→ (φ, π)), which follows from the first
two

Proof.

PS(φ)PM(φ→ φ′) =
∫

[Dπ]
[
Dπ′

]
PS(φ)PG(π)PMD

(
(φ, π)→ (φ′, π′)

)
PA
(
(φ, π)→ (φ′, π′)

)
=

2),3)

∫
[Dπ]

[
Dπ′

]
PS(φ

′)PG(−π′)PMD
(
(φ′,−π′)→ (φ,−π)

)
PA
(
(φ′,−π′)→ (φ,−π)

)
=
∫

[Dπ]
[
Dπ′

]
PS(φ

′)PG(π
′)PMD

(
(φ′, π′)→ (φ, π)

)
PA
(
(φ′, π′)→ (φ, π)

)
= PS(φ

′)PM(φ′ → φ)

where in last passage we renamed π → −π and π′ → −π′.
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is satisfied and so that the trajectories will follow PS for large Nconf. We run the program
for Nterm = 103 times to thermalize the trajectories. We have always used Nconf = 106.
Finally, as in the harmonic oscillator part, in order to have uncorrelated data, we perform
the binning procedure on the trajectories, with Nbin = 103. The acceptance rate is always
maintained over 70%.

In the following sections we enter in detail of each step of the algorithm.

ii.1 Sampling random momenta π

The conjugate momenta are to be generated following a Gaussian distribution. In order
to do so, we use a random number generator routine ranlxd.c by Martin Luescher, which
extracts with flat distribution. Then we use the Box-Muller procedure to convert x1, x2,
flatly distributed numbers, to y1, y2, which are distributed according to PG

y1 =
√
−2 ln(1− x1) cos(2π(1− x2))

y2 =
√
−2 ln(1− x1) sin(2π(1− x2))

ii.2 Descrete MD integrator: Leapfrog

The Markovian time τ0 is divided into nstep parts (nstep is a changeable parameter) in
δτ = τ0

nstep . Then we use Taylor expansion to update firstly the φ field, the π field and
then φ again

φ(τ + δτ) = φ(τ) + δτφ̇(τ) + o(δτ2)

π(τ + δτ) = π(τ) + δτπ̇(τ) + o(δτ2)

Since
φ̇(τ) =

δH
δπ

= π(τ) π̇(τ) = −δH
δφ

= −δS
δφ

= −F(τ)

with F(τ) = −2k ∑D−1
η=0 [φ(x + η) + φ(x− η)], the two fields can be updated indepen-

dently according to [
φ(τ + δτ)

π(τ)

]
= Iφ(δτ)

[
φ(τ)

π(τ)

]
=

[
1 δτ

0 1

] [
φ(τ)

π(τ)

]
(53)

[
φ(τ)

π(τ + δτ)

]
= Iπ(δτ)

[
φ(τ)

π(τ)

]
=

[
1 0

−δτ F(τ)
φ(τ)

1

] [
φ(τ)

π(τ)

]
(54)

The leapfrog integrator is the following combination of (53) and (54)

ILPF(δτ) = Iπ

(
δτ

2

)
Iφ(δτ)Iπ

(
δτ

2

)
(55)

Then
ILPF(τ0) = [ILPF(δτ)]nstep

This integrator satisfies the two requirements, discussed before, for the algorithm to be
exact: time-reversibility (note the symmetric form of (55)) and area-preserving property.
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ii.3 Time-Reversibility and Area-Preserving

Time-reversibility means that if we perform one trajectory ((φ, π)→ (φ′, π′)), then flip
the momentum sign π′ → −π and use the same algorithm to run the trajectory back
to ((φ′,−π′)→ (φ′′, π′′)), we end up at the starting point (φ′′ = φ). We have checked
this property for different nstep values and always obtained results compatible with the
computer rounding errors, as one can see from the table below

nstep |φ′′ − φ|

10 7.97e-17
15 8.57e-17
20 7.44e-17
25 1.10e-16
30 1.01e-16

On the other hand, a consequence of the phase space area-preserving property is that the
exponential of the change in the hamiltonian ∆H is on average one

〈e−∆H(φ,π)〉 = 1
ZH

∫
[Dφ] [Dπ] e−H(φ,π)e−∆H(φ,π) =

1
ZH

∫
[Dφ0] [Dπ0] e−H(φ0,π0) = 1

This can be verified in the following table

nstep 〈e−∆H(φ,π)〉

10 0.9935 ± 0.0001
15 0.99871 ± 0.00005
20 0.99962 ± 0.00003
25 0.99981 ± 0.00002
30 0.99992± 0.00001

The results become more accurate as nstep increases, since δτ becomes smaller.

ii.4 The hamiltonian is not conserved

Since the MD equations cannot be solved exactly, but a numeric integrator has to be
implemented, the hamiltonian is not conserved exactly either. It is in the limit δτ → 0,
that we are approaching the ideal case. We expect that |∆H| approaches zero linearly
with δτ2, as we can see in figure (8)

ii.5 The accept/reject step

Figure (9) illustrates the difference between an algorithm that implements the accept/reject
step and a one that does not. 〈m2〉/V2, (where V = LD), is plotted against δτ2. In the case
of the accept/reject step the value of the observable is independent of δτ2 (the angular
coefficient of the interpolating linear function is zero within 1.5σ). In fact, adding a
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Figure 8: ∆H values calculated without the accept/reject step are plotted against δτ2; a linear interpolation
is observed

Figure 9: 〈m2〉/V2 is plotted against δτ2 with and without the accept/reject step

Metropolis step at the end of each trajectory makes the algorithm correct for each value
of δτ2, even if the hamiltonian is not exactly conserved.

On the other side, without the accept/reject step, the algorithm is correct only in the
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limit ∆H → 0, i.e. in the ideal case where δτ2 is infinitesimal.
The figure (9) also shows that the two plots have the same y intercept, confirming our

predictions.

iii. Spontaneous symmetry breaking

Once we have a valid algorithm, we perform a study of the spontaneous symmetry
breaking in λφ4 theory. Data are collected once thermalization is done and the binning
procedure is implemented in order to uncorrelate data. We’ll work with a fixed value of
λ = 1.145 and will vary the k values, with k in [0.15, 0.21]. We will see that spontaneous
symmetry breaking occurs for 0.18 < k̃ < 0.19. We are looking at few observables, which
are functions of the magnetization m, considered as a primary variable:

m = ∑
x∈Λ

φ(x) (56)

The following quantities are studied:

•
〈m2〉
V2 (57)

• magnetic susceptibility χ:

χ =
[〈m2〉 − 〈|m|〉2]

V
(58)

• Binder cumulant U:

U =
〈m4〉

(〈m2〉)2 (59)

Their evolution agains k values is plotted in figures (10), (11) and (12). We can notice that
the three observables, when 0.18 < k̃ < 0.19, change suddenly, signaling that symmetry
breaking has occurred.

For great k, 〈m2〉/V2 seems to be independent of L. This indicates that we are in the
broken symmetry phase. Moreover, it suddenly passes from zero values to non-zero ones
when k̃ is approached.

This happens for the susceptivity as well, since far from the pick, where is the
transition, χ values no longer depend on L.

For the Binder cumulant, instead, we can see that at the critical point, k̃, the observable
is independent the lattice size.
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Figure 10: Binder Cumulant vs k: at the critical value of k, marked with a blue vertical line, the values are
independent of the lattice size signaling a symmetry breaking.

Figure 11: 〈m
2〉

V2 vs k: after the critical point, marked with a vertical blue line, the observable assumes
definitely a non zero value and becomes independent of L.
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Figure 12: Susceptivity vs k: far from the critical point, marked with a vertical blue line, the observable is
no longer dependent on L
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A. Jackknife method for error analysis

The jackknife procedure is a useful resampling technique which we used for the standard
deviation estimation, when dealing with non primary variables. It allows to avoid all
the derivative part calculations as would be in the standard procedure of uncertainty
propagation. Here we illustrate how the method works.

Consider a single observable. It is a random variable with its associated expectation value

〈a〉 =
∫

da [aP(a)] , VAR(a) = 〈(a− 〈a〉)2〉

Suppose now that we have N independent values of this variable. Then the best estimate
for this observable is its mean over the sample given by

a =
1
N

N−1

∑
i=0

ai

with the associated error given by

σa =
1√
N

√
∑N−1

i=0 (a− a)2

N − 1

This is standard statistic estimations and all works well as long as we have to deal with a
primary variable as a, of which we have independent measures.

Suppose now that we have a function of the expectation value of a, f (〈a〉). Its mean and
relative uncertainty can be derived using standard error propagation techniques which
involve derivatives, not always easy to perform

f = f (a) = f +
∂ f
∂a

∣∣∣∣
a=〈a〉
〈a− 〈a〉〉+ o

(
1
N

)

σ2
f =

(
∂ f
∂a

)2

a=〈a〉
σ2

a

Here comes the Jackknife method. Given our N configurations of the primary variable a,
we define the clusterized data as follows

ak ≡ 1
N − 1

[
N−1

∑
i=0

ai − ak

]
= a− (ak − a)

N − 1
(60)

where k goes from 0 to N − 1. We note that the ak values are more stable than the
original values of the random variable, since the possible oscillations around the mean
are suppressed by the factor 1/(N − 1).
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We can now define the mean and the variance for the clusterized values of the primary
variable a

[a]j ≡
1
N

N−1

∑
k=0

ak = a (61)

[σ2(a)]j ≡
N − 1

N

N−1

∑
k=0

(ak − a)2 = σ2(a) (62)

where the subscript j indicates that we followed the jackknife procedure.
In a similar way, we clusterize the composite variables given by f (〈a〉):

f k = f (ak)

Then the uncertainty on the mean value f can be simply calculated, avoiding the deriva-
tives as

σ2
j ( f ) =

N − 1
N

N−1

∑
k=0

( f k − f )2 (63)

We can show that (63) is an unbiased estimator of the variance of the sample mean

f k = f
(

a− (ak − a)
N − 1

)
= f − ∂ f

∂a

∣∣∣∣
a=<a>

(ak − a)
N − 1

+ · · ·+ o(1/N)

σ2
j ( f ) =

N − 1
N

N−1

∑
k=0

[
∂ f
∂a

∣∣∣∣
a=<a>

(ak − a)
N − 1

]2

=

=
N − 1

N
1

(N − 1)2

(
∂ f
∂a

∣∣∣∣
a=<a>

)2 N−1

∑
k=0

(ak − a)2 =

=
1

N(N − 1)

(
∂ f
∂a

∣∣∣∣
a=<a>

)2 N−1

∑
k=0

(ak − a)2 =

=

(
∂ f
∂a

∣∣∣∣
a=<a>

)2
σ2(a)

N
=

=

(
∂ f
∂a

∣∣∣∣
a=<a>

)2

σ2(a)

As a final remark, we have to take into account that if (61) holds for the primary variables,
there is a bias if we are working with composite variables

f 6= 1
N ∑

k
f k
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A. Outline of the programs

i. Harmonic oscillator (LFC18)

Main program
main.c

global.h contains
all the parameters
of the system

evolution.c
dataAction.txt
dataCorr.txt

The system is evolved
using Metropolis
algorithm for 106

configurations at
each physical time

autocorr.c dataAutoCorr.txt

The autocorrelation
function gives the
correlation lenght
of configurations

correlatorbinn.c dataBinn.txt
The correlator
sample is binned

correlatormean.c
dataCorrMean.txt
dataCorrSigma.txt

Computation of the
correlator means over
different number of
configurations (104,
105, 106, 107) with
relative uncertainty

clusterjacknife.c dataCluster.txt

Correlator data are
clusterized in order
to use jackknife error
estimation method

energy.c dataEnergy.txt
dataMatrixR.txt

∆E and matrix ele-
ment are evaluated
with correspondent
standard deviations

Calls all the following routines

Calls oa.c

and ds.c

Calls correlatorsigma.c
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ii. λφ4
theory (phi4)

Main program
phi4.c

infile contains all
the parameters
of the system

The fields φ and π

are initialized and
periodic boundary
conditions are set

hopping.c
ranlxd.c

The system is
evolved without the
accept/reject step

The system is
evolved with
the accep-

t/reject step

evolution.c
evolutionar.c

Variuous checks
are performed:

• Time-reversibility
• Hamiltonian con-

servation
• Acceptance rate
• 〈m2〉 vs δt2

• 〈e−∆H〉

DH.txt
expDH.txt

magSquared.txt

Hamiltonian Monte Carlo
algorithm is implemented

in order to generate
new field configurations

and calculate the
following observables:

• 〈m2〉/V
• Susceptivity
• Binder cumulant

hmc.c
contains all the
routines used to
perform HMC

magnet1.txt
magnet2.txt
magnet4.txt

Spontaneous symmetry
breaking analysis

measure.c

binderCumulant.txt
squaredMagnetization.txt

susceptivity.txt

output data files

output data files
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