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Abstract

SMBH-TreeMerger1 is a python script that processes SMBH merger trees, relying on data from the
Millenium simulation. The code starts from row data, where the central black holes of two galaxies are
considered merged as soon as the respective galaxies merge and in post process implements the evolution
of the black hole binaries.

A SMBH binary undergoes different phases: dynamical friction, hardening (via encounters with single
stars or shrinking due to the interaction with a gaseous disk) up to a final gravitational wave driven
phase. Then the binary eventually coalesces. If the time to coalescence exceeds the time span between
two subsequent galactic mergers, triplet or quadruplet systems form and are taken care of as well. When
the system is a quadruplet (the less likely scenario) it is immediately reduced to a triplet by ejecting
the least massive black hole. Triplets are resolved assigning probabilities to have either a prompt merger
between the two most massive black holes or an ejection of one of the three (usually the lightest one),
which in both cases leads to a new binary system. The left off binary then follows the pattern to merger
described above.

The final output serves to the calculation of merger rates as a function of redshift and of the gravita-
tional wave background strain (GWB).
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1 Introduction

SMBHs are ubiquitous: almost every galaxy harbors a SMBH at its center [1] and many galaxies are ex-
pected to have undergone multiple mergers throughout their cosmic evolution. As a consequence, we can
expect galaxies to host SMBHBs. However, the processes of SMBHB formation and evolution are still
unclear and therefore represent an active research field. To this scope, the objective of this new code is to
study the SMBHB merger rates and GWB, adopting different available models, and relying on population
data taken from the Millennium simulation [2].

The main point of the analysis is to take into consideration time delays between galaxy mergers and mergers
between the two black holes at their centers. Since the simulations data assume that ones two galaxies have
merged their black holes are merged as well, we have to consider dynamics in post process. Pairing dynamics
itself is still not completely understood. However, it is generally accepted that the following are the stages
to be considered [3]: dynamical friction phase, stellar and/or gaseous hardening phase and gravitational
wave emission phase, which leads to the final coalescence.

• The evolution begins at kpc scale separation, when the SMBHs, at the centre of their respective host
galaxies, sink, due to dynamical friction, towards the centre of the remnant galaxy (see [4, 5, 6]).

• Once the two SMBHs have entered the influence radius of one another, on ∼pc scales, a bound
system forms. The distance, however, is still too large for gravitational waves to bring the binary to
coalescence. There are two ways to shrink the binary separation and trigger GW emission:

1. Since the binary is immersed in the stellar background of the bulge, interaction with individual
low-angular-momentum stars shrinks (hardens) the binary. Through three-body scatterings with
single stars, in fact, the binary loses angular momentum and shrinks its separation. If the reservoir
of low-angular-momentum stars is sufficient, the binary is likely to reach ∼millipc separations.
This process is called the stellar hardening phase (see [7]).

2. On the other hand, in gas-rich environments, the binary can reach millipc separations thanks
to the formation of a massive circumbinary disk. Interaction with the disk can extract energy
and angular momentum from the binary driving the final coalescence. This is known as the gas
driven hardening phase (see [8]).

• In the final stage, GW emission takes over the process and the binary is brought to coalescence.

All of these stages are implemented in the code and every time the delay time, i.e. the time it takes for a
binary to merge, exceeds the time between two subsequent galactic mergers we form a triple system. In some
cases, when both of the progenitor galaxies originate from previous mergers that had not had enough time
for the black holes to merge, we have quadrupole systems. In the last case we simply eject the least massive
black among the four and treat the system as a triplet. One crucial point in the code is the treatment of
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triple systems, which is done in the light of recent numerical simulations of triplet dynamics (see [9, 10]).

The objective is to study how the GW signal is modified after taking into consideration time delays and
triplets dynamics. To a first approximation, the GW emitted frequency scales inversely with the binary
mass. Since we are dealing with SMBHs, with masses in the range 108 − 1010M⊙, the frequency of our
signal will fall in the nHz band (nHz-µHz). Moreover, we do not have resolved events, but the most likely
signal to be detected is a stochastic GWB, generated by the incoherent superposition of GWs from the
whole cosmic population of SMBH sources.
To detect such GWs one would need a galactic-size interferometer and, indeed, we can have one considering
the pulsars in our galaxy. Pulsars are the final products of the evolution of the most massive stars. During
the gravitational collapse of the supernova that gave birth to them, they acquire an extremely fast and
stable rotation, which gives that incomparable properties of atomic clocks. Low-frequency GWs emitted by
SMBHB systems would leave a characteristic imprint on the time of arrivals of radio pulses from a set of
ultra-stable millisecond pulsars that form the PTAs (Pulsar Timing Array) experiments. In general, one
computes, the difference between the expected arrival time, according to a given model, and the actual
arrival time. The detection with PTAs is expected to measure the first stages of coalescence of a SMBHB,
in the frequency window between 10−9 - 10−6Hz.
Implementing time delays and triple interactions allows us to make more realistic predictions about the
expected merger rates and GWB for SMBH binaries.
In this report we describe in Sec. 2 how data for injections is prepared . Then we outline the main algorithms
and the logic behind the SMBH-TreeMerger code in Sec. 3.

2 Data Retrieval

2.1 A note on the Millennium simulation

The Millennium Simulation [2] is a simulation of the growth of dark matter structures using 21603 particles,
from redshift z = 127 to present epoch, in a cube-shaped region of 500/hMpc side length. In post-processing,
the formation and evolution of galaxies and quasars is followed.
Black hole data have to be selected according to the mass range of interest for PTAs. In other words, black
holes with masses greater than 108 solar masses should be considered as the main sources contributing to
the GWB signal.

Since data from Millennium simulation are not public, in the rest of this section we explain how to treat
row data to obtain injection files that can be processed with SMBH-TreeMerge. On this line, the GitHub
repository contains no data files.

2.2 From raw data to injection files

We work with 4 catalogs taken from the Millenium Simulation: Bertone, De Lucia, Guo 2010 and Guo 2013.
All the mergers are taken at 64 different snapshots, from snapnum=0, the most ancient one, to snapnum=63,
the last one at present time, z = 0. All the mergers between galaxyID taken at the last snapnum and
lastProgenitorId (see A.1) represent the merger tree that brought to the given galaxy at the last snapnum.
On the following page, one can find all the information about the millennium database.

2.2.1 Manipulate raw data files

We start with two data files:

1. all roots <catalog>.txt: this file contains two columns, galaxyId and lastProgenitorId, so that
all the mergers with a galaxyId comprised between these two numbers uniquely identify a tree.
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2. all mergers <catalog>.txt: this file contains all the mergers within a catalog. The data provided
is the following:

1 [’galaxyId ’, ’lastProgenitorId ’, ’snapnum ’, ’descendantId ’,’P1_Id ’,’

P2_Id ’, ’D_z’,’D_mass ’, ’D_bulge ’, ’sfr’, ’sfr_Bulge ’, ’D_BH’, ’

P1_z’, ’P2_z’, ’M1’, ’M2’, ’P1_bulge ’, ’P2_bulge ’, ’P1_stars ’, ’

P2_stars ’,’M_cold ’, ’M_hot ’, ’V_vir ’, ’P1_cold ’, ’P1_hot ’,’P1_V_vir

’, ’P2_cold ’, ’P2_hot ’, ’P2_V_vir ’]

All the mass variables are measured in 1010M⊙/h (D mass, D buge, D BH, M1, M2, P1 bulge, P2 bulge,
P1 stars, P2 stars, M cold, M hot, P1 cold, P1 hot, P2 cold, P2 hot). sfr and sfr Bulge are
measured in M⊙/year and velocities, V vir, P1 V vir, P2 V vir, are measured in km/s.

Starting from these two data files we produce the starting data for the analysis. The following scripts are
in order of application:

1. all trees.py

• input: all roots <catalog>.txt and all mergers <catalog>.txt

• output: all trees ini triplets <catalog>.csv

Starting from all roots <catalog>.txt and all mergers <catalog>.txt we produce all the initial
trees all trees ini triplets <catalog>.csv. Subsequent trees are separated by a line of −1s:

1 galaxyId ,...,P1_Id ,P2_Id ,D_z ,...

2 ...

3 4 ,... ,5 ,2594 ,0.08928783 ,...

4 1 ,... ,2 ,2881 ,0.019932542 ,...

5 1 ,... ,2 ,2941 ,0.019932542 ,...

6 1 ,... ,2881 ,2941 ,0.019932542 ,...

7 -1,-1,-1,-1,-1,...

8 15478 ,... ,15479 ,15530 ,1.6302707 ,...

9 15477 ,... ,15478 ,15573 ,1.5036365 ,...

10 15468 ,... ,15469 ,15661 ,0.6871088 ,...

11 -1,-1,-1,-1,-1,...

12 ...

2. all filter triplets.py

• input: all trees ini triplets <catalog>.csv

• output: all filtered <catalog>.csv

Starting from data produced at the previous step, all trees ini triplets <catalog>.csv, we re-
move all the multiple mergers happening at the same snapnum, by reducing them to at most 3, the
more massive ones, ordered by mass. More precisely, in a given tree there could be more lines contain-
ing the same galaxyId and accounting for multiple mergers (the number of lines corresponds to the
number of ways one can choose a couple of black holes from the set of merging black holes, i.e. from
a minimum of 3 lines if 3 black holes merge, 6 lines if 4 black holes merge and so on). Here we keep
the most massive 3. The new output is all filtered <catalog>.csv.

3. all find triplets.py

• input: all filtered <catalog>.csv
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• output: all triplets same snapnum <catalog>.csv

Indexes corresponding to triplets in all filtered <catalog>.csv are stored in a new file

all triplets same snapnum <catalog>.csv.

4. all drop triplets same snapnum <catalog>.csv.

• input: all filtered <catalog>.csv and all triplets same snapnum <catalog>.csv

• output: all original triplets data <catalog>.csv and all starting data <catalog>.csv

Using the lines identifying triplets, we processed the triple systems using the Bonetti’s probabilities
of either prompt merger or ejection. The most massive combination (the first raw as the triplets are
mass ordered) is taken to be the inner binary, whereas the least massive black hole is treated as the
intruder. Using Bonetti’s probabilities, in 20% of cases the triplets are resolved and give back a binary
system, either as a prompt merger of two of the black holes (the remnant forms a binary with the
third one) or as an ejection of one of the black holes (the remaining two form a binary). Non resolved
triplets are manually discharged leaving the most massive merger only (the first line). Data from the
original triplets is stored in all original triplets data <catalog>.csv.

The filtered data is stored in all starting data <catalog>.csv.

5. all order trees.py

• input: all starting data <catalog>.csv

• output: all starting ordered <catalog>.csv

Data filtered of multiple mergers are ordered such that in each tree mergers start from the most ancient
to the most recent. The final data file is stored in all starting ordered <catalog>.csv.

The same process is applied to data where at the current snapnum the central black hole has a mass greater
than 108M⊙. The difference is that the prefix all is substituted with sel .

2.2.2 Generate injection files

The starting data are stored in the 4 files, named as sel starting ordered <catalog>.csv, each for one
of the four catalogs (De Lucia, Bertone, Guo2010 and Guo2013). The columns are the same as the ones
downloaded from the database (see above).

Before analyzing the trees, we need to choose both a density profile model for the galaxies and a mass
model for the central black holes. Currently we have two models for the galaxies’ density profile: either the
SIS model (Singular Isothermal Sphere) or the Hernquist model (which is a particular case of more general
Dehnen density profiles with γ = 1 coefficient). For black hole masses one can either use the one provided
by the Millennium simulation or use the Kormendy&Ho empirical relation between bulge mass and central
black hole mass (see [11]). In this latter case we populate both the progenitors and the remnant galaxies
with central black holes according to Kormendy&Ho and then the progenitors are further processed so that
their total mass equals the remnant mass and their mass ratio is the same as the original mass ratio coming
after applying Kormendy&Ho to the progenitors bulge mass values.

We have two injection files: injection <catalog> <mass model> <density model>.csv and
tree indexes <model>.csv:
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• injection <catalog> <mass model> <density model>.csv

Module model.py provides the injection file, injection <catalog> <mass model> <density model>.csv,
where more columns are added with respect to the data taken from the Millennium simulation. The
injection file has the following columns:

1 [’galaxyId ’, ’lastProgenitorId ’, ’snapnum ’, ’descendantId ’, ’P1_Id ’, ’

P2_Id ’, ’D_z’, ’D_mass ’, ’D_bulge ’, ’sfr’, ’sfr_bulge ’, ’D_BH’, ’

P1_z’, ’P2_z’, ’M1’, ’M2’, ’P1_bulge ’, ’P2_bulge ’, ’P1_stars ’, ’

P2_stars ’, ’M_cold ’, ’M_hot ’, ’V_vir ’, ’P1_M_cold ’, ’P1_M_hot ’, ’

P1_V_vir ’, ’P2_M_cold ’, ’P2_M_hot ’, ’P2_V_vir ’,’bh_mass ’, ’

P1_BH_mass ’, ’P2_BH_mass ’, ’q’, ’mass1 ’, ’mass2 ’, ’r_eff_P1 ’,’

r_inf_P1 ’, ’sigma_P1 ’, ’r_eff_P2 ’, ’r_inf_P2 ’, ’sigma_P2 ’, ’

host_r_eff ’, ’host_sigma ’,’satellite_sigma ’, ’satellite_BH ’, ’

host_BH ’, ’r_eff’, ’r_inf’, ’sigma_inf ’, ’rho_inf ’,’m_dot’, ’

hardening_type ’]

where bh mass, P1 BH mass and P2 BH mass are the masses obtained using the Kormendy&Ho relation
(otherwise they just equal the ones provided by the Millennium simulation). Then, the two masses of
a binary are calculated as follows:

q = P1 BH mass/P2 BH mass

mass1 = q/(1.+ q) ∗ bh mass

mass2 = 1./(1.+ q) ∗ bh mass

(1)

r eff, r inf in pc and sigma in km/s for both progenitors and remnant galaxies indicate, respectively,
the effective radius, the influence radius, and the velocity dispersion dependent on the chosen density
profile (see report on results). host and satellite labels distinguish between the most and least
massive galaxies in a merger.
Finally, m dot quantifies the accretion rate for gaseous hardening and is measured in M⊙/s. At
this stage also sfr and sfr bulge have been converted to M⊙/s. hardening type tells whether the
hardening phase is only stellar, only gaseous, or both. If hardening type=1 then it means that sfr=0
and the hardening phase is stellar only, otherwise both gas and stars are considered and the processes
that last less dominate this phase.

• tree indexes <model>.csv

Module find tree indexes.py provides the other injection file,
tree indexes <model>.csv, where two columns, with respectively the start and the end index of all
the trees in a catalog, are contained.

3 Analysis of merger trees

3.1 The main file

Module main.py launches the tree analysis after having checked that both of the injections files are present
(otherwise they are created):

1 # Injection files paths

2 path_data = ’%s/injection_%s_%s_%s.csv’ %(str(data_folder), str(catalog),

str(mass_model), str(density_model))

3 path_index = ’%s/tree_indexes_%s.csv’ %(str(data_folder), str(catalog))

4

5 # Check whether the specified path exists or not

6 if os.path.exists(path_data):
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7 data = pd.read_csv(path_data , names = lbs , skiprows = 1, delimiter = ’,’)

8 print(’Opening data file’)

9 else:

10 print(’Data file does not exist , generating file’)

11 model.generate_input(catalog , mass_model , density_model , h)

12 data = pd.read_csv(path_data , names = lbs , skiprows = 1, delimiter = ’,’)

13 print(’Opening data file’)

14

15 if os.path.exists(path_index):

16 index_data = pd.read_csv(path_index , names = [’start ’, ’end’], skiprows =

1, delimiter = ’,’)

17 print(’Opening index file’)

18 else:

19 print(’Index file does not exist , generating file’)

20 find_tree_indexes.find_indexes(catalog , mass_model , density_model)

21 index_data = pd.read_csv(path_index , names = [’start ’, ’end’], skiprows =

1, delimiter = ’,’)

22 print(’Opening index file’)

23

24

25 tree_start = index_data[’start ’].copy()

26 tree_end = index_data[’end’].copy()

27

28 print(’Launching tree analysis ’)

29 tree.tree(catalog , density_model , mass_model , omega_matter , omega_lambda ,

data , tree_start , tree_end)

The catalog, mass model and density profile have to be specified at the beginning of main.py. The cosmo-
logical parameters are catalog dependent and are retrieved from the settings.yaml file:

1 # Select catalog and model

2 #catalogs = [’de_lucia ’, ’bertone ’, ’guo2010 ’, ’guo2013 ’]

3 catalog = ’de_lucia ’

4 mass_model = ’KH’ # KH or millennium

5 density_model = ’isothermal ’ # isothermal or dehnen

6

7 with open(’settings.yaml’) as f:

8 doc = yaml.load(f, Loader=yaml.FullLoader)

9 catalog_properties = doc[catalog]

10 h = eval(str(catalog_properties[’h’]))

11 omega_matter = eval(str(catalog_properties[’omega_matter ’]))

12 omega_lambda = eval(str(catalog_properties[’omega_lambda ’]))

3.2 Modules interdependence

All the analysis is done in the tree.py module, which in turn calls other modules. Each tree is then analyzed
separately by the tree function:

1 for i in tqdm(np.arange(n_trees)):

2 start = tree_start[i]

3 tree_index = tree_end[i]

4 # Analyze individual trees

5 for k in range(start , tree_index):
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6 ...

In the following scheme it is sketched how SMBH-TreeMeger works:

main.py

Reads the catalog,

mass and density

models inputs and

retrieves the cosmology

from settings.yaml

Opens/creates

injection files:

Launches tree analysis

tree.py

lookback.py

delay.py

triplets.py bonetti.py

model.py

find tree indexes.py

density profile.py

bh mass model.py

injection <catalog> <mass model> <density model>.csv

tree indexes <catalog>.csv

output <catalog> <mass model> <density model>.csv

3.3 Merger analysis: binaries, triplets, quadruplets

We create 4 vectors (type P1, type P2, P1 marker and P2 marker) to store data which will allow us to
analyze the tree. They are vectors long as the total number of lines of the data file, so that data at the
same index correspond to information on the merger at that index.

type P1, and type P2 are vectors that store information on the two progenitors, P1 and P2, both initialized
with 0 values:

• If the value is 0 then the progenitor is a single black hole

• If the value is 2 then the progenitor is a binary (it means that it hasn’t successfully merged before the
subsequent galaxy merger)

Therefore we can have 4 different combinations depending on the type of the progenitors:

1 ###### Combination (1) ######

2 if (type_P1[k] == 0 and type_P2[k] == 0):

3 # BINARY!

4 form_binary_vector[k] = 1

5 ... ANALYSIS ...

6

7 else:

8 ###### Combination (2) ######

9 if (type_P1[k] == 0 and type_P2[k] == 2): # P1 is the intruder , P2 is a

binary

10 # TRIPLET!

11 form_triplet_vector[k] = 1

12 ... ANALYSIS ...

13
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14 ###### Combination (3) ######

15 if (type_P1[k] == 2 and type_P2[k] == 0): # P1 is a binary , P2 is the

intruder

16 # TRIPLET!

17 form_triplet_vector[k] = 1

18 ... ANALYSIS ...

19

20 ###### Combination (4) ######

21 # QUADRUPLET!

22 # Both P1 and P2 are binaries

23 if (type_P1[k] == 2 and type_P2[k] == 2):

24 form_quadruplet_vector[k] = 1

25 ... ANALYSIS ...

Except for the first case, we have to implement the triplet interaction in all the other cases. P1 marker and
P2 marker store the index on where to find the information on the progenitors in case these are not single
black holes.

3.3.1 Binary mergers

Both progenitors are single black holes (type P1=0 and type P2=0), which is the case at the beginning of
any tree:

• Suppose we have the binary merger at z[k] (both progenitors are single black holes). All the infor-
mation about the binary is stored at index k.

• We calculate the time delay, time to merge necessary for the two central black holes to merge (see
notes on time delay for the formulae employed)

• Then we search along the tree to find its first descendant (using one of the lookback.py functions).
This is pretty easy as galaxyIds in a tree are ordered for a depth-first search, that means that if the
difference of two galaxiesIds equals the difference in snapnums then the galaxy at higher snapnum2

descends from the galaxy at the lower snapnum:

1 # Find descendant function

2 # Set to zero the descendant type (progenitor 1 and 2)

3 P1 = 0

4 P2 = 0

5 descendant_index = -1 # deafult value if there is no descendant

6 for l in range(k + 1, tree_index):

7 if(( snapnum[l] - snapnum[k]) > 0):

8 if (( snapnum[l] - snapnum[k]) == (1 + galaxyId[k] - P1_galaxyId[l]))

:

9 P1 = 1

10 z_descendant = redshift[l]

11 descendant_index = l

12 break

13 if (( snapnum[l] - snapnum[k]) == (1 + galaxyId[k] - P2_galaxyId[l]))

:

14 P2 = 1

15 z_descendant = redshift[l]

16 descendant_index = l

2Snapnums are ordered from 0 to 63, where snapnum=63 corresponds to present day.
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17 break

18 if (descendant_index == -1): # no descendant

19 z_descendant = 0

20

21 return int(descendant_index), int(P1), int(P2), z_descendant

The function gives back the index at which the first descendant is and specifies whether the descendant
is the first progenitor P1 or the second progenitor P2.

• At this point we calculate the time elapsed between the redshift, z[k], at which this merger happens
and the redshift, z descendant, at which the descendant merger will occur (for the calculation for the
time see the paragraph 3.3.3). We call this time time to next merger.

• If time to merge > time to next merger, then at the subsequent merger either one of the progenitors
will be a binary and we already have all the information to update the four vectors above, type P1,
type P2, P1 marker and P2 marker:

1 if (decendant_index != -1 and P1 == 1 and P2 == 0):

2 # P1 of descendant is a binary!

3 type_P1[decendant_index] = 2

4 P1_marker[decendant_index] = k

5 if (decendant_index != -1 and P1 == 0 and P2 == 1):

6 # P2 of descendant is a binary

7 type_P2[decendant_index] = 2

8 P2_marker[decendant_index] = k

• At the subsequent merger the binary that hasn’t merged has updated masses as well:

1 q_bin = min(mass1[k],mass2[k])/max(mass1[k],mass2[k])

2 # P1 of descendant is a binary!

3 mass1_1[decendant_index] = q_bin /(1 + q_bin) * mass1[decendant_index]

4 mass1_2[decendant_index] = 1/(1 + q_bin) * mass1[decendant_index]

5 # P2 of descendant is a binary

6 mass2_1[decendant_index] = q_bin /(1 + q_bin) * mass2[decendant_index]

7 mass2_2[decendant_index] = 1/(1 + q_bin) * mass2[decendant_index]

• On the other hand, if the binary successfully merges before the next merger, then the default values
of type P1 and type P2 are good (they already represent single black holes), and P1 marker and
P2 marker will not be needed.

3.3.2 Triplet mergers

In case one of the two progenitors is a binary, we have to deal with a triplet interaction. This happens when
either type P1 or type P2 equals 2. Let’s analyze one case. The other is analogous:

• We first recover the information on the progenitor that is still a binary, and resolve for the inner binary
and the intruder information, that have to be passed to bonetti.py module:

1 if (type_P1[k]==0 and type_P2[k]==2):

2 # Triplet

3 # Binary from P1 and single BH (intruder) from P2

4 m_1 = max(mass2_1[k], mass2_2[k])

5 m_2 = min(mass2_1[k], mass2_2[k])

6 m_intr = mass1[k]

10



7 q_in[k] = m_2/m_1

8 q_out[k] = m_intr /(m_1 + m_2)

• Bonetti’s function (see paragraph 3.3.2) takes as input m 1 in M⊙, q in, q out and returns a number
in the range [1, 7]. Each value corresponds to a different outcome:

1. If triplet output=1 then a prompt merger between m 1 and m 2 occurred. Then we assume
that a binary forms between the merged m 1+m 2 and m 3;

2. If triplet output=2 then m 3 has been ejected and we assume that m 1 and m 2 may undergo a
delayed merger;

3. If triplet output=3 then a prompt merger between m 1 and m 3 occurred. Then we assume
that a binary forms between the merged m 1+m 3 and m 2;

4. If triplet output=4 then m 2 has been ejected and we assume that m 1 and m 3 may undergo a
delayed merger;

5. If triplet output=5 then a prompt merger between m 2 and m 3 occurred. Then we assume
that a binary forms between the merged m 2+m 3 and m 1;

6. If triplet output=6 then m 1 has been ejected and we assume that m 2 and m 3 may undergo a
delayed merger;

7. If triplet output=7 then triplet interaction hasn’t been successful (see 3.3.2).

The output is passed to an output analyzer function in module triplets.py that implemets the
next steps for each case:

1 # Launch triplet interaction

2 triplet_output = bonetti.triplet_function(m_1 ,q_in ,q_out)

3 output = triplets.output_analyzer (...)

• In all the cases, the sinking time is calculated, i.e. the dynamical friction time it takes for the binary
on one hand, and the intruder on the other, to sink to the center of the newly formed galaxy:

1 time_to_sink = delay.dynamical_friction (...)

• In cases 1), 3) and 5) are similar and the steps are the following:

– We assume that the prompt merger occurs after the binary and the intruder have reached the
influence distance (after time to sink has elapsed)

– The new binary is then assigned a delay time from the hardening phase on (plus time to sink);

– As in the binary merger case above, we proceed searching for the next descendant and analyzing
whether the merger will occur before the subsequent galactic merger.

• In cases 2), 4) and 6) after the time to sink has passed, one black hole is ejected and again we remain
with a binary. In this case the delay time is randomly selected between a start time=3 × 108 and
the time to next merger:

1 time_to_next_merger = lookback.time_between_mergers (...)

2 time_to_merge = time_to_sink + random.uniform(start_time , time_to

next_merger)

At this point the comparison between the delay time and the time to the next merger proceeds as for
the binary system explained above.

11



bonetti.py: this module assigns probabilities to each outcome of a triple interaction and extracts a result:

1 input_data = ([m_1 ,q_out ,q_in])

2 input_data = np.log10(input_data)

3

4 # Pass input data to the interpolation function for all 6 possibile

cases

5 prompt_prob12=trilinear_interp(input_data , m1, qout , qin ,

prompt_merger_frac12)

6 prompt_prob13=trilinear_interp(input_data , m1, qout , qin ,

prompt_merger_frac13)

7 prompt_prob23=trilinear_interp(input_data , m1, qout , qin ,

prompt_merger_frac23)

8 delayed_prob12=trilinear_interp(input_data , m1 , qout , qin ,

delayed_merger_frac12)

9 delayed_prob13=trilinear_interp(input_data , m1 , qout , qin ,

delayed_merger_frac13)

10 delayed_prob23=trilinear_interp(input_data , m1 , qout , qin ,

delayed_merger_frac23)

11

12 # Create vector of outcome probabilities

13 P12=prompt_prob12 /100

14 D12=P12+delayed_prob12 /100

15 P13=D12+prompt_prob13 /100

16 D13=P13+delayed_prob13 /100

17 P23=D13+prompt_prob23 /100

18 D23=P23+delayed_prob23 /100

19 no_interaction =1.0

20 probability_vector=np.array ([P12 ,D12 ,P13 ,D13 ,P23 ,D23 ,M0])

21

22

23 # Extract a random number from 0.0 to 1.0

24 random_num=np.random.random (1)

25

26 if (random_num [0]<= probability_vector [0]):

27 j=1 # prompt merger between m_1 and m_2

28 if (random_num [0]> probability_vector [0] and random_num [0]<=

probability_vector [1]):

29 j=2 # delayed merger between m_1 and m_2 -> m_3 ejected

30 if (random_num [0]> probability_vector [1] and random_num [0]<=

probability_vector [2]):

31 j=3 # prompt merger between m_1 and m_3

32 if (random_num [0]> probability_vector [2] and random_num [0]<=

probability_vector [3]):

33 j=4 # delayed merger between m_1 and m_3 -> m_2 ejected

34 if (random_num [0]> probability_vector [3] and random_num [0]<=

probability_vector [4]):

35 j=5 # prompt merger between m_2 and m_3

36 if (random_num [0]> probability_vector [4] and random_num [0]<=

probability_vector [5]):

37 j=6 # delayed merger between m_2 and m_3 -> m_1 ejected
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38 if (random_num [0]> probability_vector [5] and random_num [0]<=

probability_vector [6]):

39 j=7 # still a triplet!

40

41 return j

Note on quadruplet systems Quadruplets happen when both the progenitors are binaries that didn’t
menage to merge in time, (type P1=2 and type P2=2). We have four black holes forming two binaries. We
have to find out the least massive one to eject (which could be either one of the four) and then launch the
triplet interaction as explained in the section about triplets 3.3.2.

Resolve unresolved triplets In case we get the seventh option of the triplet interaction (the most
probable scenario), we manually keep the two most massive black holes only and eject the third one. For
what concerns the delay time, we do as follows:

• Suppose a binary forms at t 1 with a delay time of time to merge;

• time to merge is greater than the time to next merger, time to next merger, which happens at time
t 2;

• At t 2 we have a triplet system;

• After the Bonetti’s interaction the triplet still remains a triplet;

• We manually discharge the least massive black hole and assign to the left over binary a delay time equal
to the difference between time to merge and time to next merger both calculated at the previous
step;

• This time difference is to be compared with the time span between t 2 and the next galactic merger.

3.3.3 A note on the lookback time

The time between mergers is calculated using:

time to next merger = tH

∫ z2

z1

dz′
dz′

(1 + z′)
√
ΩM(1 + z′)3 +ΩΛ

(2)

where tH is the Hubble time3 H−1
0 and ΩM and ΩΛ are matter and dark energy densities. Here we have

assumed a flat geometry universe4 (Ωk = 0)
We numerically integrate Eq. 2 in the interval [z1, z2]:

1 def lookback_function(z, omega_matter , omega_lambda):

2 return 1 / ((1 + z) * np.sqrt(omega_matter * (1 + z)**3 + omega_lambda))

3

4 def time_between_mergers(z1 , z2 , omega_matter , omega_lambda):

5 integral , precision = quad(lookback_function , z1 , z2 , args=( omega_matter ,

omega_lambda))

6

7 return integral

3The Hubble time is the inverse of present day Hubble constant and it represents the time elapsed from the origin of the
Universe till now.

4Otherwise, the complete function would have been:

E(z) =
√

ΩM(1 + z)3 +Ωk(1 + z)2 +ΩΛ

13



4 Astrophysical background

4.1 Density profiles

4.1.1 Defining the effective radius Reff

The effective radius is defined as the radius within which half of the luminosity of a galaxy is contained.
For the effective radius modeling we follow the reference [12] (see Table 1). The dependencies are roughly
as follows:

Reff

kpc
= A

(
Mstars

5× 1010M⊙

)α

(3)

where A and α depend on both redshift and galaxy type. Here, in fact, the effective value distinguishes
between elliptic and spiral galaxies. The galaxy type depends on the ratio between bulge and total (stellar)
mass. In particular, we refer to [13]:

• If
Mbulge

Mstars
≥ 0.7 then we have elliptical galaxies

• If 0.03 ≥ Mbulge

Mstars
< 0.7 then we have spirals

• If
Mbulge

Mstars
< 0.03 then we have pure disks

In our model we do distinguish between spirals and disks and discriminate around the 0.7 ratio value: if
above then we have elliptical galaxies, if below we have spirals.

4.1.2 SIS model

In the singular isothermal sphere model the density profile as a function of the galaxy radius r is modeled
as:

ρ(r) =
σ2

2πGr2
(4)

with G the Newton constant and σ the velocity dispersion profile, in turn dependent on the radius:

σ(r) =

(
GMstars

4Reff

)1/2

(5)

The influence radius instead is defined as:

rinf = Reff

(
4Mbinary

Mstars

)
(6)

4.1.3 A case of Dehnen profiles: Hernquist model

We model the galaxy with a Dehnen density profile (see [14]):

ρ(r) =
(3− γ)Mstars

4π

r0

rγ (r + r0)
4−γ (7)

where γ ∈ [0, 3) and r0 is the so called scale radius. We set γ = 1 (Hernquist profile).

The scale radius is related to the effective radius, Reff , defined in 4.1.1, by the following expression:

r0 =
4

3

(
2

1
3−γ − 1

)
Reff (8)

Here the influence radius is given by:

rinf =
r0(

Mstars
2Mbinary

) 1
3−γ − 1

(9)
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Given 8 and 9 it is straightforward to compute ρ(rinf). Finally, the general expression for velocity dispersion
for a Hernquist profile is:

σ2(r) =
GMstars

12r0

{
12r (r + r0)

3

r40
ln

(
r + r0

r

)
− r

r + r0

[
25 + 52

r

r0
+ 42

(
r

r0

)2

+ 12

(
r

r0

)3
]}

(10)

Using events from the De Lucia catalog we show in Fig. 1 the difference between SIS and Hernquist
density profile, whereas in Fig. 2 we plot the density and the velocity dispersion at the influence radius for
both density models.

10 2 10 1 100 101 102 103 104 105

r [pc]

10 6

10 3

100

103

106

109

(r)
 [M

/p
c] r_

ef
f

r_
in

f (
He

rn
qu

ist
)

r_
in

f (
SI

S)
Mstar = 4.65 × 1010 M

Hernquist
SIS

10 2 10 1 100 101 102 103 104 105

r [pc]

10 4

10 2

100

102

104

106

108

1010

(r)
 [M

/p
c]

r_
ef

f

r_
in

f (
He

rn
qu

ist
)

r_
in

f (
SI

S)

Mstar = 2.61 × 1012 M

Hernquist
SIS

Figure 1: Two example of galaxies, one with lower mass, on the left, and one with higher mass, on the right.
We show the different behavior of SIS and Hernquist density profiles: SIS model has a higher mass towards
the center so that rinf is smaller and this will have consequences on delay times which will be in general
smaller.
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Figure 2: We show the different behavior of SIS and Hernquist density profiles plotting the density at
influence radius on the left and the velocity dispersion at influence radius on the right.
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4.2 Delay Times

4.2.1 Dynamical Friction Phase

For the dynamical friction timescale we follow the equations in paper [6], which we report here for conve-
nience. This phase is divided in two.

• Dynamical Friction: Phase I
In the first part we calculate the time it takes the secondary5 black hole to decay from Reff to the
influence radius of the primary black hole:

Tdf phase1 = max
(
T gal
∗,1 , T

gal
∗,2

)
, (11)

where T gal
∗,1 and T gal

∗,2 are the timescales reported in Eqs. (54) and (56) of [6]:

T gal
∗,1 = 0.06

2

lnΛ′

(
Reff

10kpc

)2( σ

300kms−1

)(
108M⊙
Mbulge

)
Gyr, (12)

T gal
∗,2 = 0.15

2

lnΛ′

(
Reff

10kpc

)(
σ

300kms−1

)2(100kms−1

σs

)3

Gyr, (13)

where Λ′ is the Coulomb logarithm given by:

Λ′ = 23/2
σ

σs
(14)

• Dynamical Friction: Phase II
The dynamical friction in this second phase is given by

Tdf phase2 = min
(
T bare
• , T gx

•

)
. (15)

Instead of considering Eq. 11 all the way down to the hardening radius, we stop at the influence radius
and then from rinf to r = χrinf we use the following ones, since once the secondary black hole enters
the sphere of influence of the primary, the two black holes are bound to each other. Here we refer to
Eqs. (58) and (59) of [6]:

T bare
• = 0.015Gyr

(lnΛα+ β + δ)−1(
3
2 − γ

)
(3− γ)

(
χγ−3/2 − 1

)( M1

3× 109M⊙

)1/2( M2

108M⊙

)−1( rinf
300 pc

)3/2

(16)

and

T gx
• = 0.012Gyr

(lnΛ′α+ β + δ)−1

(3− γ)2
(
χγ−3 − 1

)( M1

3× 109M⊙

)(
100 km/s

σs

)3

, (17)

where Λ′ is as in Eq. 14 and

Λ = ln

(
bmax

bmin

)
∼ ln

(
M1

M2

)
. (18)

M1 and M2 are the two black hole masses where M1 > M2, and χ is defined as:

χ =

(
M2

2M1

) 1
3−γ

(19)

5The distinction between primary or host and satellite galaxy/black hole relies on the mass in stars of a galaxy. The more
massive galaxy is the one, the other one is the satellite galaxy.
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Parameter γ = 2 for a SIS profile and γ = 4 for a Hernquist profile, and α, β and δ are three parameters
respectively given by:

α =
Γ(γ + 1)

Γ
(
γ − 1

2

) 4
3
π−1/22b−γ

2F1

(
3

2
;−b;

5

2
;
1

2

)
(20)

β =
Γ(γ + 1)

Γ
(
γ − 1

2

)4π−1/22−γ

∫ 1.4

1
dxx2(2− x2)b ln

(
x+ 1

x− 1

)
(21)

δ =
Γ(γ + 1)

Γ
(
γ − 1

2

)8π−1/2 2
−γ−1

b+ 1

[
0.04b+1 − 1

]
(22)

where 2F1 is an hyperbolic function and b = γ − 3
2 . These are Eqs. (21) → (25) in [6] with ξ = 1,

which represents the assumption of nearly circular orbits. Specializing our parameters to SIS (γ = 2)
and Hernquist (γ = 4) models we obtain the following values:

– SIS (γ = 2):

γ = 2; b =
1

2
; α = 0.5; β ≃ 1.37; δ ≃ −0.85 (23)

– Hernquist (γ = 4):

γ = 4; b =
5

2
; α ≃ 0.84; β ≃ 0.54; δ ≃ −0.29 (24)

4.2.2 Hardening Phase

The hardening phase could either be stellar or gaseous. If a galaxy has a non zero star formation rate (SFR),
then both processes are present and counts the one that makes the binary shrink faster. On the other hand,
if SFR=0, then stellar hardening is the only process that precedes the GW phase.

• Stellar hardening:
The binary separation a varies with time according to:

da

dt
=

da

dt

∣∣∣∣
3b

+
da

dt

∣∣∣∣
GW

= −Aa2 − B

a3
, (25)

with

A =
GHρinf
σinf

; B =
64G3M1M2MF (e)

5c5
(26)

H is the hardening rate and we take H = 15 according to [7] and

F (e) =
1

(1− e2)7/2

(
1 +

73

24
e2 +

37

96
e4
)

(27)

is the Peter-Matheus function.
Two phenomena contribute to orbital shrinking: encounter with single stars (3-body encounters) and
emission of gravitational waves. Setting astars−GW to be the separation at which the two contributions
are equal, we’ll have that for a > astars−GW stellar hardening will prevail, and for a < astars−GW till
coalescence the GW contribution will take over. The equivalence radius results in:

astars−GW =

(
64G2σinfM1M2MF (e)

5c5Hρinf

)1/5

. (28)

Given that, the 3-body encounters will shrink the binary separation according to:

da

dt

∣∣∣∣
3b

= −GHρinf
σinf

a2 (29)
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Integrating between astart = rinf and ahard−GW we get:

Tstellar hard =
σinf

GHρinf

(
1

ahard,GW
− 1

rinf

)
(30)

• Gaseous hardening:
Gaseous hardening takes place when there is a non zero SFR. Considering a steady circumbinary disk
(ṁ = const), we can derive the shrinking of the separation a over time by equating:

dLdisk

dt
=

dLBHB

dt
, (31)

where Ldisk is the gaseous disk angular momentum:

Ldisk = m
√
GMrgap, (32)

with rgap = 2a and LBHB is the black hole binary angular momentum:

LBHB = µ
√
GMa, (33)

with µ the reduced mass (µ = M1M2
M1+M2

).

Developing Eq. 31 and assuming that there is no gas leaking (µ̇ = 0 = Ṁ):

dLdisk

dt
=

dLBHB

dt

−ṁ
√
2
√
GMa = µ̇

√
GMa+ µ

1

2
√
GMa

GaṀ + µ
1

2
√
GMa

GMȧ

−ṁ
√
2
√
GMa = µ

1

2
√
GMa

GMȧ

−2
√
2ṁ = µ

ȧ

a
.

(34)

Then we obtain an expression for the time evolution of the binary separation due to interaction with
the gaseous disk:

da

dt

∣∣∣∣
gas

= −2
√
2
ṁ

µ
a. (35)

GW emission overtakes the process when:

da

dt

∣∣∣∣
gas

=
da

dt

∣∣∣∣
GW

(36)

where da
dt

∣∣∣∣
GW

is the same as in stellar hardening described above. Solving for agas−GW we obtain:

agas−GW =

(
16
√
2

5

G3

c5
M2

1M
2
2F (e)

ṁ

)1/4

. (37)

ṁ can be directly related to the SFR of the galaxy (see [15]) through:

ṁ = 100.93 log (SFR)−2.89 (38)

Integrating the equation 35 from astart = rinf to afinal = agas−GW we obtain the hardening timescale
due to interaction with the gaseous disk:

Tgas hard =

√
2

4

µ

ṁ
log

(
rinf

agas−GW

)
(39)
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4.2.3 Gravitational Waves Phase

The gravitational wave coalescence timescale is given by:

tGW =
5

256

c5

G3

a4start
M1M2M

1

F (e)
(40)

where astart can be either astar−GW or agas−GW, depending on which timescale is shorter. From now on GW
emission prevails and a shrinks down to final coalescence.
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Figure 3: We show the time delay for the De Lucia catalog with Hernquist, on the left, and SIS, on the
right, density profiles both with K&Ho masses. We distinguish between the different contributions to the
total delay time: dynamical friction time, stellar and gaseous hardening and final GW phase. The vertical
dotted line indicates the Hubble time. Observe that choosing a Hernquist profile outcomes in longer delay
times.

5 Output and Analysis

5.1 Output format

The output file output <catalog> <mass model> <density model>.csv contains in addition to the columns
of the injection file injection <catalog> <mass model> <density model>.csv 23 additional columns:

1 [’form_binary_vector ’, ’form_triplet_vector ’, ’form_quadruplet_vector ’,’

binary_vector ’,’prompt_vector ’, ’ejection_vector ’,’forced_binary_vector

’,’failed_binary_vector ’, ’failed_prompt_vector ’,’

failed_ejection_vector ’, ’failed_forced_vector ’, ’still_merging_vector ’

, ’time_to_merge ’,’time_to_next_merger ’, ’time_df ’, ’time_df_ph1 ’,’

time_df_ph2 ’, ’time_star ’, ’time_gas ’, ’time_gw ’,’

merger_redshift_vector ’,’q_in’, ’q_out ’]

• form binary vector, form triplet vector and form quadruplet vector specify whether the initial
system is a binary, a triplet or a quadruplet. They can be either 1 if the correspondence is true, zero
otherwise;
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• binary vector, prompt vector, ejection vector and forced binary vector can be either 1 or 0
signifying if the corresponding successful merger is a successful binary, a triplet with a successful
prompt merger, a triplet with a successful ejection outcome or unresolved triplet which forced binary
system has merged in time;

• failed binary vector, failed ejection vector and failed forced vector are again either 1 or 0
meaning that the merger was not successful and it started either as a binary, as a triplet with prompt
exit, a triplet with an ejection exit or an unresolved triplet;

• still merging vector indicates whether the merger at the end of the tree is still ongoing;

• time to merge, time to next merger, time df, time df ph1, time df ph2, time star, time gas,
time gw, merger redshift vector indicate, respectively, the total delay time, the time span to the
subsequent galactic merger, the dynamical friction total time, the dynamical friction time divided in
phase 1 and phase 2, the stellar hardening time, the gaseous hardening time, the gravitational wave
time delay e the redshift at which the delayed merger occurs;

• q in and q out are non zero in case we have triple systems and indicate the inner and outer binary
mass ratios.

5.2 Characteristic Background Strain

The gravitational wave background strain is given by the following expression:

h2c =
4

3π1/3

G5/3

c2
1

f
4/3
1yr

∫ ∞

0
dz

∫ ∞

0
dM d2n

dzdM
M5/3

(1 + z)1/3
, (41)

with f1yr the frequency corresponding to a time span of one year and M the chirp mass.

5.3 Merger Rates

The merger rate is given by:

dN

dtr
=

∫
dz

∫
d log(M)

d2N

dzd log(M)

1

Vsim
4π

c3

H2
0

(∫ z

0

dz′

E(z′)

)2

, (42)

where tr is the rest frame time, E(z) is as defined as:

E(z) =
√

ΩM(1 + z)3 +ΩΛ, (43)

and Vsim is the volume of the simulation.

6 Comments and Conclusions

A Bash scripts

A.1 Get trees from root galaxies

With the following script we want to retrieve all the roots to the present day galaxies. We get a file
named all roots.csv. When we put a cut on the final black hole mass (which we set at 108M⊙), we
get the information on the trees’ roots in the file cut off roots.csv. Both the files all roots.csv and
cut off roots.csv contain two columns: galaxyId and lastProgenitorId.
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Figure 4: We show the merger rate as a function of redshift for the De Lucia catalog with SIS density profile
and K&Ho masses. We distinguish between the merger rate as obtained without implementing time delay,
and the one when the dynamical model is applied. Furthermore, we point out the contributions due to
binaries and triplets.

1 #!/bin/bash

2

3 DIRNAME=PresentGalaxies

4 mkdir $DIRNAME
5

6 OUTPUTFILE="$DIRNAME/AllGalaxiesData.csv";
7

8 wget --http -user=<user_name > --http -passwd=<password > --cookies=on --keep -

session -cookies --save -cookies=cookie.txt --load -cookies=cookie.txt -O

$OUTPUTFILE "http :// gavo.mpa -garching.mpg.de/MyMillennium?action=

doQuery&SQL=

9 select D.galaxyId ,

10 D.lastProgenitorId

11

12 from MPAGalaxies .. <galaxy_catalog_name > D

13

14 where D.snapnum %3D 63

15 # add the following line to select black holes with mass > 10^8 Msol

16 # and D.blackHoleMass %3E %3D 0.0073

17

18 order by D.galaxyId asc

19 ";

20 done

Once we have the two columns with the galaxyId of the last galaxy of a tree and that of the first one,
lastProgenitorId, we can get the information about all the mergers in a tree, for all the considered trees:

1 #!/bin/bash

2

3 DIRNAME=BHMergerTrees

4 mkdir $DIRNAME
5
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6 while read f1 f2;

7 do OUTPUTFILE="$DIRNAME/Data$f1.csv";
8

9 wget --http -user=<user_name > --http -passwd=<password > --cookies=on --keep -

session -cookies --save -cookies=cookie.txt --load -cookies=cookie.txt -O

$OUTPUTFILE "http :// gavo.mpa -garching.mpg.de/MyMillennium?action=

doQuery&SQL=

10 select D.galaxyId ,

11 D.snapnum ,

12 D.descendantId ,

13 P1.galaxyId as P1_Id ,

14 P2.galaxyId as P2_Id ,

15 D.redshift as D_z ,

16 D.stellarMass as D_mass ,

17 D.bulgeMass as D_bulge ,

18 D.sfr as sfr ,

19 D.blackHoleMass as D_BH ,

20 P1.redshift as P1_z ,

21 P2.redshift as P2_z ,

22 P1.blackHoleMass as M1 ,

23 P2.blackHoleMass as M2 ,

24 P1.bulgeMass as P1_bulge ,

25 P2.bulgeMass as P2_bulge ,

26 P1.stellarMass as P1_stars ,

27 P2.stellarMass as P2_stars ,

28 D.coldGas as M_cold ,

29 D.hotGas as M_hot ,

30 D.vvir as V_vir

31

32 from MPAGalaxies .. DeLucia2006a D,

33 MPAGalaxies .. DeLucia2006a P1,

34 MPAGalaxies .. DeLucia2006a P2

35

36 where D.GalaxyId between $f1 and $f2
37 and P1.snapnum=P2.snapnum

38 and P1.galaxyId %3C P2.galaxyId

39 and P1.descendantId %3D D.galaxyId

40 and P2.descendantId %3D D.galaxyId

41 and P1.blackHoleMass %3E 0

42 and P2.blackHoleMass %3E 0

43 and P1.bulgeMass %3E 0

44 and P2.bulgeMass %3E 0

45 and P1.stellarMass %3E 0

46 and P2.stellarMass %3E 0

47

48 order by D.snapnum asc

49 ";

50 done <Data/AllGalaxiesData.csv

Each tree is stored in its own file, then the files are pasted together with a line of −1s separating different
trees.
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